422 research outputs found

    Zero field muon spin lattice relaxation rate in a Heisenberg ferromagnet at low temperature

    Full text link
    We provide a theoretical framework to compute the zero field muon spin relaxation rate of a Heisenberg ferromagnet at low temperature. We use the linear spin wave approximation. The rate, which is a measure of the spin lattice relaxation induced by the magnetic fluctuations along the easy axis, allows one to estimate the magnon stiffness constant.Comment: REVTeX 3.0 manuscript, 5 pages, no figure. Published in Phys. Rev. B 52, 9155 (1995

    Comparison of different methods for analyzing μ\muSR line shapes in the vortex state of type-II superconductors

    Full text link
    A detailed analysis of muon-spin rotation (μ\muSR) spectra in the vortex state of type-II superconductors using different theoretical models is presented. Analytical approximations of the London and Ginzburg-Landau (GL) models, as well as an exact solution of the GL model were used. The limits of the validity of these models and the reliability to extract parameters such as the magnetic penetration depth λ\lambda and the coherence length ξ\xi from the experimental μ\muSR spectra were investigated. The analysis of the simulated μ\muSR spectra showed that at high magnetic fields there is a strong correlation between obtained λ\lambda and ξ\xi for any value of the Ginzburg-Landau parameter κ=λ/ξ\kappa = \lambda/\xi. The smaller the applied magnetic field is, the smaller is the possibility to find the correct value of ξ\xi. A simultaneous determination of λ\lambda and ξ\xi without any restrictions is very problematic, independent of the model used to describe the vortex state. It was found that for extreme type-II superconductors and low magnetic fields, the fitted value of λ\lambda is practically independent of ξ\xi. The second-moment method frequently used to analyze μ\muSR spectra by means of a multi-component Gaussian fit, generally yields reliable values of λ\lambda in the whole range of applied fields Hc1HHc2 H_{c1} \ll H \lesssim H_{c2} (Hc1H_{c1} and Hc2H_{c2} are the first and second critical fields, respectively). These results are also relevant for the interpretation of small-angle neutron scattering (SANS) experiments of the vortex state in type-II superconductors.Comment: 17 pages, 19 figure

    2D Kagome Ordering in the 3D Frustrated Spinel Li2Mn2O4

    Full text link
    muSR experiments on the geometrically frustrated spinel oxide, Li2Mn2O4, show the development of spin correlations over a range of length scales with decreasing temperature. Increased relaxation below 150 K is consistent with the onset of spin correlations. Below 50 K, spin order on a length scale, which is long range for the muSR probe, appears abruptly in temperature, consistent with prior neutron diffraction results. The oscillations in the zero field asymmetry are analyzed using a three frequency model. By locating the muon site this is shown to be consistent with the unexpected 2D q = root 3 x root 3 structure on the Kagome planes proposed originally from neutron data. Longitudinal field data demonstrate that some spin dynamics persist even at 2 K. Thus, a very complex magnetic ground state, featuring the co-existence of long length scale 2D ordering and significant spin dynamics, is proposed. This is unusual considering the 3D topology of the Mn3+ spins in this material.Comment: 9 pages, 9 figures, to be submitted to J. Phys. Cond. Mat

    Muon spin rotation and relaxation in magnetic materials

    Full text link
    A review of the muon spin rotation and relaxation (μ\muSR) studies on magnetic materials published from July 1993 is presented. It covers the investigation of magnetic phase diagrams, of spin dynamics and the analysis of the magnetic properties of superconductors. We have chosen to focus on selected experimental works in these different topics. In addition, a list of published works is provided.Comment: Review article, 59 pages, LaTeX with IoP macro

    Understanding the μ\muSR spectra of MnSi without magnetic polarons

    Get PDF
    Transverse-field muon-spin rotation (μ\muSR) experiments were performed on a single crystal sample of the non-centrosymmetric system MnSi. The observed angular dependence of the muon precession frequencies matches perfectly the one of the Mn-dipolar fields acting on the muons stopping at a 4a position of the crystallographic structure. The data provide a precise determination of the magnetic dipolar tensor. In addition, we have calculated the shape of the field distribution expected below the magnetic transition temperature TCT_C at the 4a muon-site when no external magnetic field is applied. We show that this field distribution is consistent with the one reported by zero-field μ\muSR studies. Finally, we present ab initio calculations based on the density-functional theory which confirm the position of the muon stopping site inferred from transverse-field μ\muSR. In view of the presented evidence we conclude that the μ\muSR response of MnSi can be perfectly and fully understood without invoking a hypothetical magnetic polaron state.Comment: 10 pages, 12 figure

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure

    Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts

    Get PDF
    Solid contacts involving soft materials are important in mechanical engineering or biomechanics. Experimentally, such contacts have been shown to shrink significantly under shear, an effect which is usually explained using adhesion models. Here we show that quantitative agreement with recent high-load experiments can be obtained, with no adjustable parameter, using a non-adhesive model, provided that finite deformations are taken into account. Analysis of the model uncovers the basic mechanisms underlying shear-induced area reduction, local contact lifting being the dominant one. We confirm experimentally the relevance of all those mechanisms, by tracking the shear-induced evolution of tracers inserted close to the surface of a smooth elastomer sphere in contact with a smooth glass plate. Our results suggest that finite deformations are an alternative to adhesion, when interpreting a variety of sheared contact experiments involving soft materials.Comment: Version accepted at J. Mech. Phys. Solids. It includes Supplementary Informatio

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006
    corecore