95,162 research outputs found

    Remote sensing in operational range management programs in Western Canada

    Get PDF
    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons

    SCUBA polarisation observations of the magnetic fields in the prestellar cores L1498 and L1517B

    Full text link
    We have mapped linearly polarized dust emission from the prestellar cores L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter SCUBAPOL at a wavelength of 850um. We use these measurements to determine the plane-of-sky magnetic field orientation in the cores. In L1498 we see a magnetic field across the peak of the core that lies at an offset of 19 degrees to the short axis of the core. This is similar to the offsets seen in previous observations of prestellar cores. To the southeast of the peak, in the filamentary tail of the core, we see that the magnetic field has rotated to lie almost parallel to the long axis of the filament. We hypothesise that the field in the core may have decoupled from the field in the filament that connects the core to the rest of the cloud. We use the Chandrasekhar-Fermi (CF) method to measure the plane-of-sky field strength in the core of L1498 to be 10 +/- 7 uG. In L1517B we see a more gradual turn in the field direction from the northern part of the core to the south. This appears to follow a twist in the filament in which the core is buried, with the field staying at a roughly constant 25 degree offset to the short axis of the filament, also consistent with previous observations of prestellar cores. We again use the CF method and calculate the magnetic field strength in L1517B also to be 30 +/- 10 uG. Both cores appear to be roughly virialised. Comparison with our previous work on somewhat denser cores shows that, for the denser cores, thermal and non-thermal (including magnetic) support are approximately equal, while for the lower density cores studied here, thermal support dominates.Comment: 6 pages, 2 figures; accepted for publication by MNRA

    A turbulent MHD model for molecular clouds and a new method of accretion on to star-forming cores

    Get PDF
    We describe the results of a sequence of simulations of gravitational collapse in a turbulent magnetized region. The parameters are chosen to be representative of molecular cloud material. We find that several protostellar cores and filamentary structures of higher than average density form. The filaments inter-connect the high density cores. Furthermore, the magnetic field strengths are found to correlate positively with the density, in agreement with recent observations. We make synthetic channel maps of the simulations and show that material accreting onto the cores is channelled along the magnetized filamentary structures. This is compared with recent observations of S106, and shown to be consistent with these data. We postulate that this mechanism of accretion along filaments may provide a means for molecular cloud cores to grow to the point where they become gravitationally unstable and collapse to form stars.Comment: Accepted by MNRA

    Some aspects of the deformation of a Neo- Hookean material in compression Interim report

    Get PDF
    Deformation of neo-Hookean material during uniaxial compressio

    Searching for Globally Optimal Functional Forms for Inter-Atomic Potentials Using Parallel Tempering and Genetic Programming

    Full text link
    We develop a Genetic Programming-based methodology that enables discovery of novel functional forms for classical inter-atomic force-fields, used in molecular dynamics simulations. Unlike previous efforts in the field, that fit only the parameters to the fixed functional forms, we instead use a novel algorithm to search the space of many possible functional forms. While a follow-on practical procedure will use experimental and {\it ab inito} data to find an optimal functional form for a forcefield, we first validate the approach using a manufactured solution. This validation has the advantage of a well-defined metric of success. We manufactured a training set of atomic coordinate data with an associated set of global energies using the well-known Lennard-Jones inter-atomic potential. We performed an automatic functional form fitting procedure starting with a population of random functions, using a genetic programming functional formulation, and a parallel tempering Metropolis-based optimization algorithm. Our massively-parallel method independently discovered the Lennard-Jones function after searching for several hours on 100 processors and covering a miniscule portion of the configuration space. We find that the method is suitable for unsupervised discovery of functional forms for inter-atomic potentials/force-fields. We also find that our parallel tempering Metropolis-based approach significantly improves the optimization convergence time, and takes good advantage of the parallel cluster architecture

    Improved laboratory gradiometer can be a field survey instrument

    Get PDF
    Improvements made to quartz gradiometer minimize or eliminate disturbing effects from known error sources and permit sensitivity of + or - 1 times 10 to the minus 9th power/sec sq or better and measuring accuracy of + or - 5 times 10 to the minus 9th power/sec sq

    Molecular gas freeze-out in the pre-stellar core L1689B

    Full text link
    C17O (J=2-1) observations have been carried out towards the pre-stellar core L1689B. By comparing the relative strengths of the hyperfine components of this line, the emission is shown to be optically thin. This allows accurate CO column densities to be determined and, for reference, this calculation is described in detail. The hydrogen column densities that these measurements imply are substantially smaller than those calculated from SCUBA dust emission data. Furthermore, the C17O column densities are approximately constant across L1689B whereas the SCUBA column densities are peaked towards the centre. The most likely explanation is that CO is depleted from the central regions of L1689B. Simple models of pre-stellar cores with an inner depleted region are compared with the results. This enables the magnitude of the CO depletion to be quantified and also allows the spatial extent of the freeze-out to be firmly established. We estimate that within about 5000 AU of the centre of L1689B, over 90% of the CO has frozen onto grains. This level of depletion can only be achieved after a duration that is at least comparable to the free-fall timescale.Comment: MNRAS letters. 5 pages, 5 figure

    First Observations of the Magnetic Field Geometry in Pre-stellar Cores

    Get PDF
    We present the first published maps of magnetic fields in pre-stellar cores, to test theoretical ideas about the way in which the magnetic field geometry affects the star formation process. The observations are JCMT-SCUBA maps of 850 micron thermal emission from dust. Linear polarizations at typically ten or more independent positions in each of three objects, L1544, L183 and L43 were measured, and the geometries of the magnetic fields in the plane of the sky were mapped from the polarization directions. The observed polarizations in all three objects appear smooth and fairly uniform. In L1544 and L183 the mean magnetic fields are at an angle of around 30 degrees to the minor axes of the cores. The L43 B-field appears to have been influenced in its southern half, such that it is parallel to the wall of a cavity produced by a CO outflow from a nearby T Tauri star, whilst in the northern half the field appears less disturbed and has an angle of 44 degrees to the core minor axis. We briefly compare our results with published models of magnetized cloud cores and conclude that no current model can explain these observations simultaneously with previous ISOCAM data.Comment: 13 pages, 3 figs, to appear in ApJ Letter
    corecore