739 research outputs found

    Effects of Single versus Multiple Warnings on Driver Performance

    Get PDF
    Objective: To explore how a single master alarm system affects drivers’ responses when compared to multiple, distinct warnings. Background: Advanced driver warning systems are intended to improve safety, yet inappropriate integration may increase the complexity of driving, especially in high workload situations. This study investigated the effects of auditory alarm scheme, reliability, and collision event-type on driver performance. Method: A 2x2x4 mixed factorial design investigated the impact of two alarm schemes (master vs. individual) and two levels of alarm reliability (high and low) on distracted drivers’ performance across four collision event-types (frontal collision warnings, left and right lane departure warnings, and follow vehicle fast approach). Results: Participants’ reaction times and accuracy rates were significantly affected by the type of collision event and alarm reliability. The use of individual alarms, rather than a single master alarm, did not significantly affect driving performance in terms of reaction time or response accuracy. Conclusion: Even though a master alarm is a relatively uninformative warning, it produced statistically no different reaction times or accuracy results when compared to information-rich auditory icons, some of which were spatially located. In addition, unreliable alarms negatively impacted driver performance, regardless of event type or alarm scheme. Application: These results have important implications for the development and implementation of multiple driver warning systems.This project was sponsored by the Ford Motor Company

    Ralph Lamar Webb - Scrapbook Resolutions from Fergus Lodge pg. 2

    Get PDF
    Scrapbook page created by Fay Webb Gardner documenting the death of her brother, Ralph Lamar Webb. Page includes a news clipping of the Resolution passed by the Fergus Lodge (Masonic) of Loganville, GA in honor of Ralph\u27s passing. Page includes a contemporary photograph of Ralph Lamar Webb. Page also includes a document in the upper right corner which has degraded over time and is illegible.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-ralph-lamar-webb/1002/thumbnail.jp

    Snowmass 2001: Jet Energy Flow Project

    Get PDF
    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on QCD and Strong Interactions at Snowmass 200

    EXPERIMENTAL ERROR IN AGRONOMIC FIELD TRIALS

    Get PDF
    Agronomic experiments often summarize work carried out in trials run in several locations over several years, referred to generically as environments. The appropriate statistical analyses for these experiments depend on definitions used for experimental error. The results of one such experiment, in which identical designs were used in each environment, illustrate the commonalities and differences in analyses that can result from using different definitions of experimental error

    Traveling wave solutions in the Burridge-Knopoff model

    Full text link
    The slider-block Burridge-Knopoff model with the Coulomb friction law is studied as an excitable medium. It is shown that in the continuum limit the system admits solutions in the form of the self-sustained shock waves traveling with constant speed which depends only on the amount of the accumulated stress in front of the wave. For a wide class of initial conditions the behavior of the system is determined by these shock waves and the dynamics of the system can be expressed in terms of their motion. The solutions in the form of the periodic wave trains and sources of counter-propagating waves are analyzed. It is argued that depending on the initial conditions the system will either tend to synchronize or exhibit chaotic spatiotemporal behavior.Comment: 12 pages (ReVTeX), 7 figures (Postscript) to be published in Phys. Rev.

    Applications of QCD

    Get PDF
    Talk given at XIXth International Symposium on Lepton and Photon Interactions at High Energies (LP 99), Stanford, California, 9-14 August 1999.Comment: latex, 26 page

    Tevatron-for-LHC Report of the QCD Working Group

    Get PDF
    The experiments at Run 2 of the Tevatron have each accumulated over 1 inverse femtobarn of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focussed on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.Comment: 156 pages, Tevatron-for-LHC Conference Report of the QCD Working Grou

    Distribution of Fe3+ and H in Minerals During Partial Melting and Metasomatism of Spinel Peridotite

    Get PDF
    Oxygen fugacity and water content are crucial parameters for many chemical and physical properties of the Earth's mantle, for example bearing on fluid type, melting initiation, and deformation. However, the exact behaviour of Fe3+ and H during melting and metasomatism is still under debate. Here, the Fe3+/Fe ratio (Mssbauer and EMP) and water content (FTIR) of peridotite minerals are examined in mantle xenoliths from Kilbourne Hole (KH), NM, and Dish Hill (DH), CA (USA). These spinel peridotites have compositions consistent with partial melting with variable degrees of metasomatism (undetectable to cryptic to modal). Pyroxenites also allow to examine melt-rock reactions. Bulk-rock Fe2O3 content of the KH peridotites correlates with indices of melting (positive with bulk-rock Al2O3 and Cpx Yb contents, and negative with spinel Cr#) confirming that Fe3+ behaves as an incompatible element during melting. Correlations of the Fe3+/Fe ratio of minerals with these indices, however, indicates that Fe3+ is incompatible in Cpx but compatible in Opx and spinel during melting. Water contents in olivine, Cpx and Opx from most KH peridotites can be explained by partial melting and correlate negatively with the Fe3+/Fe ratio of spinel and Opx but positively with that of Cpx. This indicates partial control of Fe3+ on the incorporation of H in pyroxene, but not related to a redox equilibrium in Cpx. The higher Fe3+/Fe ratio of spinel in the metasomatized KH and DH peridotites, and in the pyroxenites confirms that oxidation characterizes modal metasomatism. Metasomatism, however, is not necessarily accompanied by water addition

    Single-Inclusive Jet Production in Polarized pp Collisions at O(alpha_s^3)

    Full text link
    We present a next-to-leading order QCD calculation for single-inclusive high-p_T jet production in longitudinally polarized pp collisions within the ``small-cone'' approximation. The fully analytical expressions obtained for the underlying partonic hard-scattering cross sections greatly facilitate the analysis of upcoming BNL-RHIC data on the double-spin asymmetry A_{LL}^{jet} for this process in terms of the unknown polarization of gluons in the nucleon. We simultaneously rederive the corresponding QCD corrections to unpolarized scattering and confirm the results existing in the literature. We also numerically compare to results obtained with Monte-Carlo methods and assess the range of validity of the ``small-cone'' approximation for the kinematics relevant at BNL-RHIC.Comment: 23 pages, 8 eps-figure
    • …
    corecore