5,790 research outputs found

    On C*-algebras generated by pairs of q-commuting isometries

    Full text link
    We consider the C*-algebras O_2^q and A_2^q generated, respectively, by isometries s_1, s_2 satisfying the relation s_1^* s_2 = q s_2 s_1^* with |q| < 1 (the deformed Cuntz relation), and by isometries s_1, s_2 satisfying the relation s_2 s_1 = q s_1 s_2 with |q| = 1. We show that O_2^q is isomorphic to the Cuntz-Toeplitz C*-algebra O_2^0 for any |q| < 1. We further prove that A_2^{q_1} is isomorphic to A_2^{q_2} if and only if either q_1 = q_2 or q_1 = complex conjugate of q_2. In the second part of our paper, we discuss the complexity of the representation theory of A_2^q. We show that A_2^q is *-wild for any q in the circle |q| = 1, and hence that A_2^q is not nuclear for any q in the circle.Comment: 18 pages, LaTeX2e "article" document class; submitted. V2 clarifies the relationships between the various deformation systems treate

    The scaling relations of early--type galaxies in clusters I. Surface photometry in seven nearby clusters

    Get PDF
    This is the first paper of a series investigating the scaling relations of early-type galaxies in clusters. Here we illustrate the multi-band imagery and the image reduction and calibration procedures relative to the whole sample of 22 clusters at 0.05 < z < 0.25. We also present the detailed surface photometry of 312 early-type galaxies in 7 clusters in the first redshift bin, z~0.025-0.075. We give for each galaxy the complete set of luminosity and geometrical profiles, and and a number of global, photometric and morphological parameters. They have been evaluated taking into account the effects of seeing. Internal consistency checks and comparisons with data in the literature confirm the quality of our analysis. These data, together with the spectroscopic ones presented in the second paper of the series, will provide the local calibration of the scaling relations.Comment: 36 pages, 13 figures, 7 tables, accepted for publication in A&

    The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars

    Get PDF
    (Abridged) The water deuterium fractionation (HDO/H2_2O abundance ratio) has traditionally been used to infer the amount of water brought to Earth by comets. Measuring this ratio in deeply-embedded low-mass protostars makes it possible to probe the critical stage when water is transported from clouds to disks in which icy bodies are formed. We present sub-arcsecond resolution observations of HDO in combination with H218_2^{18}O from the PdBI toward the three low-mass protostars NGC 1333-IRAS 2A, IRAS 4A-NW, and IRAS 4B. The resulting HDO/H2_2O ratio is 7.4±2.1×1047.4\pm2.1\times10^{-4} for IRAS 2A, 19.1±5.4×10419.1\pm5.4\times10^{-4} for IRAS 4A-NW, and 5.9±1.7×1045.9\pm1.7\times10^{-4} for IRAS 4B. Derived ratios agree with radiative transfer models within a factor of 2-4 depending on the source. Our HDO/H2_2O ratios for the inner regions (where T>100T>100 K) of four young protostars are only a factor of 2 higher than those found for pristine, solar system comets. These small differences suggest that little processing of water occurs between the deeply embedded stage and the formation of planetesimals and comets.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

    Full text link
    We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines amongst all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43 K, 197 K, 397 K, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of H2O trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, Hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter SED along with the azimuthally-averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20-40 um requires a cavity with a constant-density inner region and a power-law density outer region. The best fit model has an envelope mass of 19 solar mass inside a radius of 0.315 pc and a central luminosity of 18.8 solar luminosity. The time since collapse began is 24630-44000 yr, most likely around 36000 yr. The corresponding mass infall rate in the envelope (1.2x105^{-5} solar mass per year) is comparable to the stellar mass accretion rate, while the mass loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.Comment: Accepted for publication in ApJ. 33 pages; 34 figures; 4 table

    Spatially resolved spectroscopy of Coma cluster early-type galaxies - II:the minor axis dataset

    Get PDF
    We present minor axis, off set major axis and one diagonal long slit spectra for 10 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. We derive rotation curves, velocity dispersion profiles and the H-3 and H-4 coefficients of the Hermite decomposition of the line of sight velocity distribution. Moreover, we derive the line index profiles of Mg, Fe and Hbeta line indices and assess their errors. The data will be used to construct dynamical models of the galaxies and study their stellar populations

    Optimizing the CLIC Beam Delivery System

    Get PDF
    The optimization of the new CLIC Final Focus System (FFS) with L*=3.5m is presented for a collection of CLIC beam parameters. The final performance is computed for the full Beam Delivery System including the new diagnostics section. A comparison to previous designs is also presented

    Singlet-Triplet Physics and Shell Filling in Carbon Nanotube Double Quantum Dots

    Full text link
    An artifcial two-atomic molecule, also called a double quantum dot (DQD), is an ideal system for exploring few electron physics. Spin-entanglement between just two electrons can be explored in such systems where singlet and triplet states are accessible. These two spin-states can be regarded as the two states in a quantum two-state system, a so-called singlet-triplet qubit. A very attractive material for realizing spin based qubits is the carbon nanotube (CNT), because it is expected to have a very long spin coherence time. Here we show the existence of a gate-tunable singlet-triplet qubit in a CNT DQD. We show that the CNT DQD has clear shell structures of both four and eight electrons, with the singlet-triplet qubit present in the four-electron shells. We furthermore observe inelastic cotunneling via the singlet and triplet states, which we use to probe the splitting between singlet and triplet, in good agreement with theory.Comment: Supplement available at: http://www.fys.ku.dk/~hij/public/singlet-triple_supp.pd

    Stabilization of Polar Nano Regions in Pb-free ferroelectrics

    Full text link
    Formation of polar nano regions through solid-solution additions are known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nano regions, understanding their real-space atomic structure and dynamics of formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nano regions in the Pb-free ferroelectric of Ba(Zr,Ti)O3. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently, which leads to increased local correlation among dipoles below THz frequencies. The dynamic pair distribution function technique demonstrates unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties

    Potential for Electropositive Metal to Reduce the Interactions of Atlantic Sturgeon with Fishing Gear

    Full text link
    Atlantic sturgeon (Acipenser oxyrhynchus) populations have been declared either endangered or threatened under the U.S. Endangered Species Act. Effective measures to repel sturgeon from fishing gear would be beneficial to both fish and fishers because they could reduce both fishery‐associated mortality and the need for seasonal and area closures of specific fisheries. Some chondrostean fishes (e.g., sturgeons and paddlefishes) can detect weak electric field gradients (possibly as low as 5 Μv/cm) due to arrays of electroreceptors (ampullae of Lorenzini) on their snout and gill covers. Weak electric fields, such as those produced by electropositive metals (typically mixtures of the lanthanide elements), could therefore potentially be used as a deterrent. To test this idea, we recorded the behavioral responses of juvenile Atlantic sturgeon (31–43 cm fork length) to electropositive metal (primarily a mixture of the lanthanide elements neodymium and praseodymium) both in the presence and absence of food stimuli. Trials were conducted in an approximately 2.5 m diameter × 0.3 m deep tank, and fish behaviors were recorded with an overhead digital video camera. Video records were subsequently digitized (x, y coordinate system), the distance between the fish and the electropositive metal calculated, and data summarized by compiling frequency distributions with 5‐cm bins. Juvenile sturgeon showed clear avoidance of electropositive metal but only when food was present. On the basis of our results, we conclude that the electropositive metals, or other sources of weak electric fields, may eventually be used to reduce the interactions of Atlantic sturgeon with fishing gear, but further investigation is needed. El Potencial del Metal Electropositivo para Reducir las Interacciones del Esturión Atlántico con Instrumentos de Pesca Bouyoucos, Bushnell & Brill 13–003 Resumen Las poblaciones del esturión atlántico ( Acipenser oxyrhynchus ) han sido declaradas como en peligro o amenazadas bajo el Acta de Especies en Peligro de los Estados Unidos. Las medidas efectivas para repeler a los esturiones de los instrumentos de pesca serían benéficas para los peces y los pescadores ya que podrían reducir la mortalidad asociada a la pesca y la necesidad de los cierres temporales y de área de pesquerías específicas. Algunos peces chondrosteos (p. ej.: esturiones y peces espátula) pueden detectar gradientes débiles de campos eléctricos (posiblemente tan bajos como 5 μV cm −1 ) debido a grupos de electroreceptores (ámpulas de Lorenzini) en su hocico y opérculos. Los campos eléctricos débiles, como aquellos producidos por metales electropositivos (comúnmente mezcla de elementos lantánidos), podrían entonces ser usados potencialmente como un disuasivo. Para probar esta idea, filmamos las respuestas conductuales de esturiones juveniles (31 – 43 cm de largo) a metales electropositivos (principalmente una mezcla de los elementos lantánidos neodimio y praseodimio) tanto en la presencia como en la ausencia de estímulos de alimento. Las pruebas se realizaron en un tanque de ≈ 2.5 metros de diámetro x 0.3 m de profundidad, y las conductas de los peces se filmaron con una cámara digital de video colocada sobre el tanque. Las filmaciones después se digitaron (sistema de coordenadas x, y), se calculó la distancia entre los peces y el metal electropositivo y se resumió la información al compilar las distribuciones de la frecuencia con contenedores de 5 cm. Los esturiones juveniles mostraron clara evitación del metal electropositivo pero sólo cuando el alimento estaba presente. Basándonos en nuestros resultados, concluimos que los metales electropositivos, u otras fuentes de campos eléctricos débiles, puede ser usada eventualmente para reducir las interacciones del esturión atlántico con los instrumentos de pesca, pero es necesario llevar a cabo más investigaciones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102646/1/cobi12200.pd
    corecore