7,107 research outputs found
Brownian motion of solitons in a Bose-Einstein Condensate
For the first time, we observed and controlled the Brownian motion of
solitons. We launched solitonic excitations in highly elongated
BECs and showed that a dilute background of impurity atoms in a different
internal state dramatically affects the soliton. With no impurities and in
one-dimension (1-D), these solitons would have an infinite lifetime, a
consequence of integrability. In our experiment, the added impurities scatter
off the much larger soliton, contributing to its Brownian motion and decreasing
its lifetime. We describe the soliton's diffusive behavior using a quasi-1-D
scattering theory of impurity atoms interacting with a soliton, giving
diffusion coefficients consistent with experiment.Comment: 4 figure
Glueball Spin
The spin of a glueball is usually taken as coming from the spin (and possibly
the orbital angular momentum) of its constituent gluons. In light of the
difficulties in accounting for the spin of the proton from its constituent
quarks, the spin of glueballs is reexamined. The starting point is the
fundamental QCD field angular momentum operator written in terms of the
chromoelectric and chromomagnetic fields. First, we look at the restrictions
placed on the structure of glueballs from the requirement that the QCD field
angular momentum operator should satisfy the standard commutation
relationships. This can be compared to the electromagnetic charge/monopole
system, where the quantization of the field angular momentum places
restrictions (i.e. the Dirac condition) on the system. Second, we look at the
expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio
Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain
Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics
Improving measurements of SF6 for the study of atmospheric transport and emissions
Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.)
A Complexity View of Rainfall
We show that rain events are analogous to a variety of nonequilibrium
relaxation processes in Nature such as earthquakes and avalanches. Analysis of
high-resolution rain data reveals that power laws describe the number of rain
events versus size and number of droughts versus duration. In addition, the
accumulated water column displays scale-less fluctuations. These statistical
properties are the fingerprints of a self-organized critical process and may
serve as a benchmark for models of precipitation and atmospheric processes.Comment: 4 pages, 5 figure
Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis
The basic purpose of the paper is to draw the attention of researchers to new
possibilities of differentiation of similar signals having different nature.
One of examples of such kind of signals is presented by seismograms containing
recordings of earthquakes (EQ's) and technogenic explosions (TE's). We propose
here a discrete stochastic model for possible solution of a problem of strong
EQ's forecasting and differentiation of TE's from the weak EQ's. Theoretical
analysis is performed by two independent methods: with the use of statistical
theory of discrete non-Markov stochastic processes (Phys. Rev. E62,6178 (2000))
and the local Hurst exponent. Time recordings of seismic signals of the first
four dynamic orthogonal collective variables, six various plane of phase
portrait of four dimensional phase space of orthogonal variables and the local
Hurst exponent have been calculated for the dynamic analysis of the earth
states. The approaches, permitting to obtain an algorithm of strong EQ's
forecasting and to differentiate TE's from weak EQ's, have been developed.Comment: REVTEX +12 ps and jpg figures. Accepted for publication in Phys. Rev.
E, December 200
Cellular automaton rules conserving the number of active sites
This paper shows how to determine all the unidimensional two-state cellular
automaton rules of a given number of inputs which conserve the number of active
sites. These rules have to satisfy a necessary and sufficient condition. If the
active sites are viewed as cells occupied by identical particles, these
cellular automaton rules represent evolution operators of systems of identical
interacting particles whose total number is conserved. Some of these rules,
which allow motion in both directions, mimic ensembles of one-dimensional
pseudo-random walkers. Numerical evidence indicates that the corresponding
stochastic processes might be non-Gaussian.Comment: 14 pages, 5 figure
Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts
The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries) that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes) that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes) as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures
- …