126 research outputs found
Fine Structure in Energy Spectra of Ultrasmall Au Nanoparticles
We have studied tunneling into individual Au nanoparticles of estimated
diameters 2-5 nm, at dilution refrigerator temperatures. The I-V curves
indicate resonant tunneling via discrete energy levels of the particle. Unlike
previously studied normal metal particles of Au and Al, in these samples we
find that the lowest energy tunneling resonances are split into clusters of
2-10 subresonances. Such effects appear to be increasingly important in smaller
grains, as might be expected from the larger characteristic energies.Comment: 1 pdf fil
On Wheeler's delayed-choice Gedankenexperiment and its laboratory realization
Here, we present an analysis and interpretation of the experiment performed
by Jacques et al. (2007 Science 315, 966), which represents a realization of
Wheeler's delayed-choice Gedankenexperiment. Our analysis is based on the
evolution of the photon state, since the photon enters into the Mach-Zehnder
interferometer with a removable beam-splitter until it exits. Given the same
incident photon state onto the output beam-splitter, BS_output, the photon's
state at the exit will be very different depending on whether BS_output is on
or off. Hence, the statistics of photon counts collected by the two detectors,
positioned along orthogonal directions at the exit of the interferometer, is
also going to be very different in either case. Therefore, it is not that the
choice of inserting (on) or removing (off) a beam-splitter leads to a delayed
influence on the photon behavior before arriving at the beam-splitter, but that
such a choice influences the photon state at and after BS_output, i.e., after
it has exited from the Mach-Zehnder interferometer. The random on/off choice at
BS_output has no delayed effect on the photon to behave as a wave or a
corpuscle at the entrance and inside the interferometer, but influences the
subsequent evolution of the photon state incident onto BS_output.Comment: 7 pages, 4 figure
Modelling Electron Spin Accumulation in a Metallic Nanoparticle
A model describing spin-polarized current via discrete energy levels of a
metallic nanoparticle, which has strongly asymmetric tunnel contacts to two
ferromagnetic leads, is presented.
In absence of spin-relaxation, the model leads to a spin-accumulation in the
nanoparticle, a difference () between the chemical potentials of
spin-up and spin-down electrons, proportional to the current and the Julliere's
tunnel magnetoresistance. Taking into account an energy dependent
spin-relaxation rate , as a function of bias
voltage () exhibits a crossover from linear to a much weaker dependence,
when equals the spin-polarized current through the
nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon
emission and Elliot-Yafet mechanism, the model leads to a crossover from linear
to dependence. The crossover explains recent measurements of the
saturation of the spin-polarized current with in Aluminum nanoparticles,
and leads to the spin-relaxation rate of in an Aluminum
nanoparticle of diameter , for a transition with an energy difference of
one level spacing.Comment: 37 pages, 7 figure
Properties of the quantum state arising after the L-photon state has passed trough a linear quantum amplifier
We consider the system of N two-level atoms, of which N0 atoms are unexcited and N1 are excited. This system of N two-level atoms, which forms a linear quantum amplifier, interacts with a single-mode electromagnetic field. The problem of amplification of the L-photon states using such an amplifier is studied. The evolution of the electromagnetic field density matrix is described by the master equation for the field under amplification. The dynamics of this process is such that it can be described as the transformation of the scale of the phase space. The exact solution of the master equation is expressed using the transformed Husimi function of the L-quantum state of the harmonic oscillator. The properties of this function are studied and using it the average photon number and its fluctuations in the amplified state are found. © 2021, Editura Academiei Romane. All rights reserved
Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis
The coherence effects induced by external photons coupled to matter waves inside a MachZehnder three-grating interferometer are analyzed. Alternatively to atomphoton entanglement scenarios, the model considered here only relies on the atomic wavefunction and the momentum shift induced in it by the photon scattering events. A functional dependence is thus found between the observables, namely the fringe visibility and the phase shift, and the transversal momentum transfer distribution. Good quantitative agreement is found when comparing the results obtained from our model with the experimental data. © 2012 IOP Publishing Ltd.MD, MB and DA acknowledge support from the Ministry of Science of Serbia under Projects OI171005, OI171028 and III45016. ASS acknowledges support from the Ministerio de Econom´ıa y Competitividad (Spain) under Projects FIS2010-22082 and FIS2010-29596-C02-01, as well as for a “Ram´on y Cajal” Research Fellowship.Peer Reviewe
Spectroscopy, Interactions and Level Splittings in Au Nanoparticles
We have measured the electronic energy spectra of nm-scale Au particles using
a new tunneling spectroscopy configuration. The particle diameters ranged from
5nm to 9nm, and at low energies the spectrum is discrete, as expected by the
electron-in-a-box model. The density of tunneling resonances increases rapidly
with energy, and at higher energies the resonances overlap forming broad
resonances. Near the Thouless energy, the broad resonances merge into a
continuum. The tunneling resonances display Zeeman splitting in a magnetic
field. Surprisingly, the g-factors (~0.3) of energy levels in Au nano-particles
are much smaller than the g-factor (2.1) in bulk gold
Suppression of Spin-Orbit Scattering in Strong-Disordered Gold Nanojunctions
We discovered that spin-orbit scattering in strong-disordered gold
nanojunctions is strongly suppressed relative to that in weak-disordered gold
thin films. This property is unusual because in weak-disordered films,
spin-orbit scattering increases with disorder. Granularity and freezing of
spin-orbit scattering inside the grains explains the suppression of spin-orbit
scattering. We propose a generalized Elliot-Yafet relation that applies to
strong-disordered granular regime.Comment: 4 pages 4 figure
Spin-Polarized Electron Transport through Nanometer-Scale Al Grains
We investigate spin-polarized electron tunnelling through ensembles of
nanometer scale Al grains embedded between two Co-reservoirs at 4.2K, and
observe tunnelling-magnetoresistance (TMR) and effects from spin-precession in
the perpendicular applied magnetic field (the Hanle effect). The spin-coherence
time () measured using the Hanle effect is of order . The
dephasing is attributed to electron spin-precession in local magnetic fields.
Dephasing process does not destroy , which is strongly asymmetric with
bias voltage. The asymmetric TMR is explained by spin relaxation in Al grains
and asymmetric electron dwell times.Comment: 4 pages 4 figure
Magnetic-field dependence of energy levels in ultrasmall metal grains
We present a theory of mesoscopic fluctuations of g tensors and avoided
crossing energies in a small metal grain. The model, based on random matrix
theory, contains both the orbital and spin contributions to the g tensor. The
two contributions can be experimentally separated for weak spin-orbit coupling
while they merge in the strong coupling limit. For intermediate coupling,
substantial correlations are found between g factors of neighboring levels.Comment: 9 pages, 5 figure
Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis
The coherence effects induced by external photons coupled to matter waves
inside a Mach-Zehnder three-grating interferometer are analyzed. Alternatively
to atom-photon entanglement scenarios, the model considered here only relies on
the atomic wave function and the momentum shift induced in it by the photon
scattering events. A functional dependence is thus found between the
observables, namely the fringe visibility and the phase shift, and the
transversal momentum transfer distribution. A good quantitative agreement is
found when comparing the results obtained from our model with the experimental
data.Comment: 18 pages, 4 figure
- …