5,223 research outputs found

    Parallel quantized charge pumping

    Full text link
    Two quantized charge pumps are operated in parallel. The total current generated is shown to be far more accurate than the current produced with just one pump operating at a higher frequency. With the application of a perpendicular magnetic field the accuracy of quantization is shown to be << 20 ppm for a current of 108.9108.9 pA. The scheme for parallel pumping presented in this work has applications in quantum information processing, the generation of single photons in pairs and bunches, neural networking and the development of a quantum standard for electrical current. All these applications will benefit greatly from the increase in output current without the characteristic decrease in accuracy as a result of high-frequency operation

    Potential of Peroxisome Proliferator-Activated Receptor Gamma Antagonist Compounds as Therapeutic Agents for a Wide Range of Cancer Types

    Get PDF
    PPARĪ³ is a therapeutic target that has been exploited for treatment of type II diabetes mellitus (T2DM) with agonist drugs. Since PPARĪ³ is expressed by many hematopoietic, mesodermal and epithelial cancers, agonist drugs were tested and shown to have both preclinical and clinical anticancer activities. While preclinical activity has been observed in many cancer types, clinical activity has been observed only in pilot and phase II trials in liposarcoma and prostate cancer. Most studies address agonist compounds, with substantially fewer reports on anticancer effects of PPARĪ³ antagonists. In cancer model systems, some effects of PPARĪ³ agonists were not inhibited by PPARĪ³ antagonists, suggesting noncanonical or PPARĪ³-independent mechanisms. In addition, PPARĪ³ antagonists, such as T0070907 and GW9662, have exhibited antiproliferative effects on a broad range of hematopoietic and epithelial cell lines, usually with greater potency than agonists. Also, additive antiproliferative effects of combinations of agonist plus antagonist drugs were observed. Finally, there are preclinical in vivo data showing that antagonist compounds can be administered safely, with favorable metabolic effects as well as antitumor effects. Since PPARĪ³ antagonists represent a new drug class that holds promise as a broadly applicable therapeutic approach for cancer treatment, it is the subject of this review

    Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies.

    Get PDF
    BackgroundSupernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6).MethodsWe investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations.ResultsSeveral subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups.ConclusionsOur results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups

    Single-parameter non-adiabatic quantized charge pumping

    Full text link
    Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.Comment: 4 pages, 4 figure

    Inverse Compton Scattering as the Source of Diffuse EUV Emission in the Coma Cluster of Galaxies

    Get PDF
    We have examined the hypothesis that the majority of the diffuse EUV flux in the Coma cluster is due to inverse Compton scattering of low energy cosmic ray electrons (0.16 < epsilon < 0.31 GeV) against the 3K black-body background. We present data on the two-dimensional spatial distribution of the EUV flux and show that these data provide strong support for a non-thermal origin for the EUV flux. However, we show that this emission cannot be produced by an extrapolation to lower energies of the observed synchrotron radio emitting electrons and an additional component of low energy cosmic ray electrons is required.Comment: 11 pages, 5 figure

    Increased seed consumption by biological control weevil tempers positive CO\u3csub\u3e2\u3c/sub\u3e effect on invasive plant (\u3ci\u3eCentaurea diffusa\u3c/i\u3e) fitness

    Get PDF
    Predicted increases in atmospheric CO2 and temperature may benefit some invasive plants, increasing the need for effective invasive plant management. Biological control can be an effective means of managing invasive plants, but the anticipated range in responses of plantā€“insect interactions to climate change make it difficult to predict how effective biological control will be in the future. Field experiments that manipulate climate within biological control systems could improve predictive power, but are challenging to implement and therefore rare to date. Here, we show that free air CO2 enrichment in the field increased the fitness of Centaurea diffusa Lam., a problematic invader in much of the western United States. However, CO2 enrichment also increased the impact of the biological control agent Larinus minutus (Coleoptera: Curculionidae) on C. diffusa fitness. C. diffusa plants flowered earlier and seed heads developed faster with both elevated CO2 and increased temperature. Natural dispersal of L. minutus into the experimental plots provided a unique opportunity to examine weevil preference for and effects on C. diffusa grown under the different climate change treatments. Elevated CO2 increased both the proportion of seed heads infested by L. minutus and, correspondingly, the amount of seed removed by weevils. Warming had no detectable effect on weevil utilization of plants. Higher weevil densities on elevated CO2 plants reduced, but did not eliminate, the positive effects of CO2 on C. diffusa fitness. Correlations between plant development time and weevil infestation suggest that climate change increased weevil infestation by hastening plant phenology. Phenological mismatches are anticipated with climate change in many plantā€“insect systems, but in the case of L. minutus and C. diffusa in mixed-grass prairie, a better phenological match may make the biological control agent more effective as CO2 levels rise
    • ā€¦
    corecore