1,045 research outputs found

    Manchester English

    Get PDF

    On phase-space integrals with Heaviside functions

    Get PDF
    We discuss peculiarities that arise in the computation of real-emission contributions to observables that contain Heaviside functions. A prominent example of such a case is the zero-jettiness soft function in SCET, whose calculation at next-to-next-to-next-to-leading order in perturbative QCD is an interesting problem. Since the zero-jettiness soft function distinguishes between emissions into different hemispheres, its definition involves Ξ-functions of light-cone components of emitted soft partons. This prevents a direct use of multi-loop methods, based on reverse unitarity, for computing the zero-jettiness soft function in high orders of perturbation theory. We propose a way to bypass this problem and illustrate its effectiveness by computing various non-trivial contributions to the zero-jettiness soft function at NNLO and N3LO in perturbative QCD

    Non equilibrium anisotropic excitons in atomically thin ReS2_2

    Full text link
    We present a systematic investigation of the electronic properties of bulk and few layer ReS2_2 van der Waals crystals using low temperature optical spectroscopy. Weak photoluminescence emission is observed from two non-degenerate band edge excitonic transitions separated by ∌\sim 20 meV. The comparable emission intensity of both excitonic transitions is incompatible with a fully thermalized (Boltzmann) distribution of excitons, indicating the hot nature of the emission. While DFT calculations predict bilayer ReS2_2 to have a direct fundamental band gap, our optical data suggests that the fundamental gap is indirect in all cases

    Bilayer graphene inclusions in rotational-stacked multilayer epitaxial graphene

    Full text link
    Additional component in multi-layer epitaxial graphene grown on the C-terminated surface of SiC, which exhibits the characteristic electronic properties of a AB-stacked graphene bilayer, is identified in magneto-optical response of this material. We show that these inclusions represent a well-defined platform for accurate magneto-spectroscopy of unperturbed graphene bilayers.Comment: 5 pages, 2 figures, to appear in Phys. Rev.

    Probing the inter-layer exciton physics in a MoS2_2/MoSe2_2/MoS2_2 van der Waals heterostructure

    Full text link
    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of inter-layer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe2_2/WSe2_2 heterostructures. Here we report on the observation of long lived inter-layer exciton emission in a MoS2_2/MoSe2_2/MoS2_2 trilayer van der Waals heterostructure. The inter-layer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power and temperature dependence of the inter-layer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long lived valley polarization of inter-layer exciton. Intriguingly, the inter-layer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the inter-layer exciton emission.Comment: 19 pages, 3 figures. Just accepted for publication in Nano Letters (http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03184

    A new beamline for laser spin-polarization at ISOLDE

    Full text link
    A beamline dedicated to the production of laser-polarized radioactive beams has been constructed at ISOLDE, CERN. We present here different simulations leading to the design and construction of the setup, as well as technical details of the full setup and examples of the achieved polarizations for several radioisotopes. Beamline simulations show a good transmission through the entire line, in agreement with observations. Simulations of the induced nuclear spin-polarization as a function of atom-laser interaction length are presented for 26,28^{26,28}Na, [1] and for 35^{35}Ar, which is studied in this work. Adiabatic spin rotation of the spin-polarized ensemble of atoms, and how this influences the observed nuclear ensemble polarization, are also performed for the same nuclei. For 35^{35}Ar, we show that multiple-frequency pumping enhances the ensemble polarization by a factor 1.85, in agreement with predictions from a rate equations model. [1] J. Phys. G: Nucl. Part. Phys./174408400

    Black chokeberry fruit polyphenols: A valuable addition to reduce lipid oxidation of muffins containing xylitol

    Get PDF
    The study aimed at assessing effects of black chokeberry polyphenol extract (ChPE) added (0.025–0.075%) to xylitol-containing muffins to reduce lipid oxidation, especially in preventing degradation of hydroperoxides throughout the storage period. Among polyphenolic compounds (3092 mg/100 g in total) in ChPE, polymeric procyanidins were the most abundant (1564 mg/100 g). ChPE addition resulted in a significantly increased capacity of scavenging free radicals and markedly inhibited hydroperoxides decomposition, as reflected by low anisidine values (AnV: 3.25–7.52) throughout the storage. On the other hand, sucrose-containing muffins had increased amounts of primary lipid oxidation products and differed significantly from other samples in conjugated diene hydroperoxides (CD values), which was in accordance with the decrease of C18:2 9c12c in those muffins after storage. In addition, sucrose-containing muffins were found to be those with the highest level of contamination with toxic carbonyl lipid oxidation products. Throughout the storage, no yeast or moulds contamination were found in higher enriched muffins. The incorporation of polyphenols to xylitol-containing muffins resulted in preventing decomposition of polyunsaturated fatty acids (PUFAs), and in reducing the content of some toxic aldehydes. ChPE could be regarded as a possible solution to xylitol-containing muffins to extend their shelf life. The results support the use of xylitol in muffin manufacture as being favourable in terms of suitability for diabetics

    Static and Dynamic Disorder in Triple-Cation Hybrid Perovskites

    Get PDF
    A detailed understanding of the carrier dynamics and emission characteristics of organic-inorganic lead halide perovskites is critical for their optoelectronic and energy harvesting applications. In this work, we reveal the impact of the crystal lattice disorder on the photo-generated electron-hole pairs through low-temperature photoluminescence measurements. We provide strong evidence that the intrinsic disorder forms a sub-bandgap tail density of states, which determines the emission properties at low temperature. The PL spectra indicate that the disorder evolves with increasing temperature, changing its character from static to dynamic. This change is accompanied by a rapid drop of the PL efficiency, originating from the increased mobility of excitons/polarons, which enables them to reach deep non-radiative recombination centers more easily

    Conservation of Nickel Ion Single-Active Site Character in a Bottom-Up Constructed π-Conjugated Molecular Network

    Get PDF
    On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes
    • 

    corecore