77,870 research outputs found

    Co-constructing a new framework for evaluating social innovation in marginalized rural areas

    Get PDF
    The EU funded H2020 project \u2018Social Innovation in Marginalised Rural Areas\u2019 (SIMRA; www.simra-h2020.eu) has the overall objective of advancing the state-of-the-art in social innovation. This paper outlines the process for co- developing an evaluation framework with stakeholders, drawn from across Europe and the Mediterranean area, in the fields of agriculture, forestry and rural development. Preliminary results show the importance of integrating process and outcome-oriented evaluations, and implementing participatory approaches in evaluation practice. They also raise critical issues related to the comparability of primary data in diverse regional contexts and highlight the need for mixed methods approaches in evaluation

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    Understanding the threats posed by non-native species: public vs. conservation managers.

    Get PDF
    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone

    Lorentz-Violating Supergravity

    Full text link
    The standard forms of supersymmetry and supergravity are inextricably wedded to Lorentz invariance. Here a Lorentz-violating form of supergravity is proposed. The superpartners have exotic properties that are not possible in a theory with exact Lorentz symmetry and microcausality. For example, the bosonic sfermions have spin 1/2 and the fermionic gauginos have spin 1. The theory is based on a phenomenological action that is shown to follow from a simple microscopic and statistical picture.Comment: 15 pages; to be published in Proceedings of Beyond the Desert 2003 (Castle Ringberg, Tegernsee, Germany, 9-14 June 2003), edited by H. V. Klapdor-Kleingrothau

    DEFAULT MODE NETWORK AND WORKING MEMORY NETWORK DURING AN FMRI WORKING MEMORY TASK: DIFFERENCES AND CORRELATIONS WITH BEHAVIORAL PERFORMANCE

    Get PDF
    INTRODUCTION Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation[1-5]. However, the mechanism through which working memory load modulates brain connectivity is still unclear. During a working memory task, two of the most involved networks are the default mode network (DMN) and the working memory network (WMN)[6-7]: the selective focus on these networks can be useful in better understanding the load effects. Spatial independent component analysis (ICA)[8] has becomes a reliable technique to investigate the networks involved during an fMRI task, as it extracts spatiotemporal patterns of neural activity maximizing spatial independence. A specific study, conducted with ICA, investigating on how the load and phase of a working memory task are related with the activation and response time, is nowadays lacking. The aim of this work is to use the time course of DMN and WMN, selected by means of ICA, for studying: a) how these networks are involved with the complexity of the task and the phase; b) how, in these networks, complexity and phase are correlated with reaction times. METHODS MR Data Acquisition and preprocessing Fifteen young adult healthy and right-handed were involved. The MR protocol consisted of one anatomical sequence 3D T1-weighted MP-RAGE (Voxel size: 1 x 1 x 1 mm) and three functional acquisitions of 15 minutes each performed with a T2*-weighted EPI sequence (TR/TE: 1500/30, In- plane resolution: 3.5x3.5 mm, Thickness: 3.5 mm, Nr of slices: 24, Field of view: 64 x 64 mm). All the images were collected with a Siemens Allegra 3T MR scanner (Siemens, Erlangen, Germany) and a standard head coil. During the fMRI acquisition the subjects performed a delayed spatial working memory paradigm presented with three levels of difficulty. The memory set consisted of one, three or five circles presented randomly in different locations and to the subjects were asked to judge whether or not a given target stimulus had been part of a previous memory stimulus set. Every experiment consisted of 90 working memory trials, 30 per load, divided in three runs. Data were analyzed with Brain Voyager QX. 2.4 (Brain Innovation, Maastricht, The Netherlands). FMRI preprocessing included: 3D head-motion correction, slice-scan time correction, spatial smoothing, temporal high pass filter and linear trend removal. Anatomic 3D data set was inhomogeneities corrected, filtered and transformed into Talairach coordinates and coregistered with the functional information. Independent Component Analysis This analysis was conducted using Brainvoyager QX 2.4. ICA analysis was performed on each subject\u2019s three functional acquisitions. A subsequent total ICA group analysis[9-10] was achieved by an inter- subject ICA group analysis of all the intra-subject ICA group analysis. From the obtained maps were selected two Independent Components (ICs) containing the WMN[1,2]: WMN1 defined by SPL and Precuneus, and WMN2 with DLPFC and IPS (Fig. 1b-c). Also one IC describing the DMN was considered, with PCC, IPL and MPFC (Fig. 1a)[11]. For each run of all the subjects the ICs time course was considered: three time windows of 3TR (4.5s) for each working memory task phase (encode, maintenance and retrieval) were selected taking into account the haemodynamic response by delaying the window of 5 volumes events from the start of every trial. The window time course was corrected for a baseline value. Mean values of the ICs where examined and a subsequent correlation between the mean values and the response time in every trial was estimated. A 3x3 two-way ANOVA on Fisher transformed correlation was conducted to test the variation of loads (load1=less complex, load3=more complex), phases and runs. Figure 1: Networks selected from ICA analysis (transversal view): (a) DMN, (b) WMN1 (c) WMN2. RESULTS Figure 2 exhibits window mean activities and correlations divided for phase and load. DMN mean activity is negative while WMN1-2 mean activities have opposite behaviors regarding the phase, but similar concerning with the complexity (Fig. 2a-c). DMN shows a reduction of the correlation from encode to retrieval, instead of WM1-2 where it grows (Fig. 2d-f). The ANOVA showed significant variation for the phases over all the subjects in WMN1-2, an interaction of the variation of phases and runs in WMN2 and a interaction of phases, runs and loads in DMN. DISCUSSION These findings suggest that working memory networks (WMNs), as isolated by means of IC A, display substantially opposed mean values related to a different areas specialization. WMN1 seems to be more involved in the first part of the mnemonic phase and the amount of this involvement is associated to the trial: the more complicated the task, the higher the activation with respect to baseline. On the other hand, WMN2 increases from the first to the last part of the trial and is probably more involved in the operation of retrieval. In Figure 2e-f it is also shown that in the retrieval there is a stronger correlation between WMN1-2 mean values and the response time probably because this phase is the more complex. DMN exhibits, over all the phases, smaller than zero mean values (due to the task inducted deactivation). In contrast, its correlation has a different trend and increases above zero during the maintenance, probably due to the free thought of this phase. The different behavior of load 3 is probably due to the fact that this type of complexity is totally different from the other two. In conclusion, this study shows that, by means of ICA, it is possible to isolate networks of connected regions and relate their time courses to task phases and behavioral performance. This is a promising approach to advance the understanding of connectivity modulations in several brain networks, including WMNs and DMN

    Hardware prototyping and validation of a W-ΔDOR digital signal processor

    Get PDF
    Microwave tracking, usually performed by on ground processing of the signals coming from a spacecraft, represents a crucial aspect in every deep-space mission. Various noise sources, including receiver noise, affect these signals, limiting the accuracy of the radiometric measurements obtained from the radio link. There are several methods used for spacecraft tracking, including the Delta-Differential One-Way Ranging (ΔDOR) technique. In the past years, European Space Agency (ESA) missions relied on a narrowband ΔDOR system for navigation in the cruise phase. To limit the adverse effect of nonlinearities in the receiving chain, an innovative wideband approach to ΔDOR measurements has recently been proposed. This work presents the hardware implementation of a new version of the ESA X/Ka Deep Space Transponder based on the new tracking technique named Wideband ΔDOR (W-ΔDOR). The architecture of the new transponder guarantees backward compatibility with narrowband ΔDOR

    A comparison of two-coloured filter systems for treating visual reading difficulties

    Get PDF
    Copyright @ 2013 Informa UK Ltd.Purpose: Visual disturbances that make it difficult to read text are often termed “visual stress”. Coloured filters in spectacles may help some children overcome reading problems that are often caused by visual stress. It has been suggested that for optimal effect each child requires an individually prescribed colour for each eye, as determined in systems such as the “Harris Foundation” coloured filters. Alternatively, it has been argued that only blue or yellow filters, as used in the “Dyslexia Research Trust” (DRT) filter system, are necessary to affect the underlying physiology. Method: A randomised, double blind trial with 73 delayed readers, was undertaken to compare changes in reading and spelling as well as irregular and non-word reading skills after 3 months of wearing either the Harris or the DRT filters. Results: Reading improved significantly after wearing either type of filter (t = −8.4, p < 0.01), with 40% of the children improving their reading age by 6 months or more during the 3 month trial. However, spelling ability (t = 2.1, p = 0.05) and non-word reading (f = 4.7, p < 0.05) improved significantly more with the DRT than with the Harris filters. Conclusion: Education and rehabilitation professionals should therefore, consider coloured filters as an effective intervention for delayed readers experiencing visual stress

    MicroRNA-mediated regulatory circuits: outlook and perspectives

    Get PDF
    MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators
    corecore