16 research outputs found

    Klebsiella aerogenes adhesion behaviour during biofilm formation on monazite

    Get PDF
    The adsorption behaviour of micro-organisms during the initial attachment stage of biofilm formation affects subsequent stages. The available area for attachment and the chemophysical properties of a surface affect microbial attachment performance. This study focused on the initial attachment behaviour of Klebsiella aerogenes on monazite by measuring the ratio of planktonic against sessile subpopulations (P:S ratio), and the potential role of extracellular DNA (eDNA). eDNA production, effects of physicochemical properties of the surface, particle size, total available area for attachment, and the initial inoculation size on the attachment behaviour were tested. K. aerogenes attached to monazite immediately after exposure to the ore; however, the P:S ratio significantly (p = 0.05) changed in response to the particle size, available area, and inoculation size. Attachment occurred preferentially on larger-sized (~50 Āµm) particles, and either decreasing the inoculation size or increasing the available area further promoted attachment. Nevertheless, a portion of the inoculated cells always remained in a planktonic state. K. aerogenes produced lower eDNA in response to the changed surface chemical properties when monazite was replaced by xenotime. Using pure eDNA to cover the monazite surface significantly (p ā‰¤ 0.05) hindered bacterial attachment due to the repulsive interaction between the eDNA layer and bacteria

    Single-nucleus RNA sequencing of pre-malignant liver reveals disease-associated hepatocyte state with HCC prognostic potential

    Get PDF
    Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified

    Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design

    No full text
    Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting ā€œprotectiveā€ HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to FcĪ³ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients

    Biofilm formation on the surface of monazite and xenotime during bioleaching

    Get PDF
    Abstract Microbial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs. In this study, microbial attachment and biofilm formation of Klebsiella aerogenes ATCC 13048 on the surface of these minerals were investigated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In a batch culture system, K. aerogenes was able to attach and form biofilms on the surface of three phosphate minerals. The microscopy records showed three distinctive stages of biofilm development for K. aerogenes commencing with initial attachment to the surface occurring in the first minutes of microbial inoculation. This was followed by colonization of the surface and formation of a mature biofilm as the second distinguishable stage, with progression to dispersion as the final stage. The biofilm had a thinā€layer structure. The colonization and biofilm formation were localized toward physical surface imperfections such as cracks, pits, grooves and dents. In comparison to monazite and xenotime crystals, a higher proportion of the surface of the highā€grade monazite ore was covered by biofilm which could be due to its higher surface roughness. No selective attachment or colonization toward specific mineralogy or chemical composition of the minerals was detected. Finally, in contrast to abiotic leaching of control samples, microbial activity resulted in extensive microbial erosion on the highā€grade monazite ore

    Viremic HIV Controllers Exhibit High Plasmacytoid Dendritic Cellā€“Reactive Opsonophagocytic IgG Antibody Responses against HIV-1 p24 Associated with Greater Antibody Isotype Diversification

    No full text
    Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG Abs against HIV-1 Gag proteins (e.g., p24) and/or production of IgG2 Abs against HIV-1 proteins. These Abs likely exert their effect by activating antiviral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG Ab response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcĪ³RIIa would be associated with control of HIV and that this would be enhanced by Ab isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG Ab responses against HIV-1 p24 were higher in HIV controllers (HIV RNA < 2000 copies/ml) than noncontrollers (HIV RNA > 10,000 copies/ml), particularly in controllers with low but detectable viremia (HIV RNA 75-2000 copies/ml). Opsonophagocytic Ab responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and, notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these Abs was mediated via FcĪ³RIIa. Isotype diversification (toward IgG2) was greatest in HIV controllers, and depletion of IgG2 from Ig preparations indicated that IgG2 Abs to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of Ab function, such as Ag opsonization. Our findings emulate those for pDC-reactive opsonophagocytic Ab responses against coxsackie, picorna, and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development

    Viremic HIV Controllers Exhibit High Plasmacytoid Dendritic Cellā€“Reactive Opsonophagocytic IgG Antibody Responses against HIV-1 p24 Associated with Greater Antibody Isotype Diversification

    No full text
    Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG antibodies against HIV-1 Gag proteins (e.g. p24) and/or production of IgG2 antibodies against HIV-1 proteins. These antibodies likely exert their effect by activating anti-viral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG antibody response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcĪ³RIIa would be associated with control of HIV and that this would be enhanced by antibody isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG antibody responses against HIV-1 p24 were higher in HIV controllers (HIV RNA <2000 copies/mL) than non-controllers (HIV RNA >10,000 copies/mL) particularly in controllers with low but detectable viremia (HIV RNA 75ā€“2000 copies/mL). Opsonophagocytic antibody responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these antibodies was mediated via FcĪ³RIIa. Isotype diversification (towards IgG2) was greatest in HIV controllers and depletion of IgG2 from immunoglobulin preparations indicated that IgG2 antibodies to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of antibody function, such as antigen opsonization. Our findings emulate those for pDC-reactive opsonophagocytic antibody responses against coxsackie, picorna and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development

    PcP-specific IgG1<sup>+</sup> and IgG2<sup>+</sup> ASCs in HIV patients and HIV seronegative subjects at day 7 post-vaccination with PcPs.

    No full text
    <p><b>(A)</b> IgG1<sup>+</sup> ASC to PcP 4, 6B, 9V and 14 <b>(B)</b> IgG2<sup>+</sup> ASC to PcP 4, 6B, 9V and 14. Data are presented as ASC/2x10<sup>5</sup> PBMC. The horizontal lines indicate median values. Median values of IgG1<sup>+</sup> ASC/2 x10<sup>5</sup> PBMC in ART-treated, ART-naive and HIV seronegative subjects to PcP 4: 0.5, 0 and 6, respectively; PcP 6B: 2, 1 and 6, respectively; PcP 9V: 1, 1 and 6, respectively and PcP 14: 0, 2 and 7, respectively. Median values of IgG2<sup>+</sup> ASC/ 2x10<sup>5</sup> PBMC in ART-treated, ART-naive and HIV seronegative subjects to PcP 4: 6, 7 and 21, respectively; PcP 6B: 7, 7 and 22, respectively; PcP 9V: 6, 3 and 21, respectively and PcP 14: 3, 8 and 22, respectively. Differences between groups were tested using Mann-Whitney tests. n.s., not significant and p<0.05 considered significant.</p
    corecore