13 research outputs found

    ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer.

    Get PDF
    We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance

    Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer

    Get PDF
    BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. CONCLUSIONS/SIGNIFICANCE: These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance

    Molecular Evolutionary Relationships of Enteroinvasive Escherichia coli and Shigella spp.

    No full text
    Enteroinvasive Escherichia coli (EIEC), a distinctive pathogenic form of E. coli causing dysentery, is similar in many properties to bacteria placed in the four species of Shigella. Shigella has been separated as a genus but in fact comprises several clones of E. coli. The evolutionary relationships of 32 EIEC strains of 12 serotypes have been determined by sequencing of four housekeeping genes and two plasmid genes which were used previously to determine the relationships of Shigella strains. The EIEC strains were grouped in four clusters with one outlier strain, indicating independent derivation of EIEC several times. Three of the four clusters contain more than one O antigen type. One EIEC strain (an O112ac:H− strain) was found in Shigella cluster 3 but is not identical to the Shigella cluster 3 D2 and B15 strains with the same O antigen. Two forms of the virulence plasmid pINV have been identified in Shigella strains by using the sequences of ipgD and mxiA genes, and all but two of our EIEC strains have pINV A. The EIEC strains were grouped in two subclusters with a very low level of variation, generally not intermingled with Shigella pINV A strains. The EIEC clusters based on housekeeping genes were reflected in the plasmid gene sequences, with some exceptions. Two strains were found in the pINV B form by using the ipgD sequence, with one strain having an mxiA sequence similar to the divergent sequence of D1. Clearly, EIEC and Shigella spp. form a pathovar of E. coli

    ELF5 specifies breast cancer subtype.

    No full text
    <p>(A) Sub network of breast cancer subtype gene sets derived from forced ELF5 expression in MCF7 luminal breast cancer cells (inner node color) and knockdown of ELF5 expression in HCC1937 basal breast cancer cells. Node size is proportional to gene set size; thicker green lines indicate greater gene set overlap. Nodes are positioned according to similarity in gene sets. Labels in bold type indicate the functional significance of the four clusters generated, label is plain type is the gene set name. The full network is shown in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001461#pbio.1001461.s016" target="_blank">Figure S16</a>. (B–D) expression signature analysis of the ELF5-induced changes in molecular subtype produced by ELF5 knockdown in HCC1937 cells (B), or forced ELF5 expression in MCF7 cells (C), or T47D cells (D). Bars show the indicated comparisons that produce the associated <i>p</i>-values. BS, borderline significance; NS, not significant.</p

    Elf5 modulates the adhesion of breast cancer cells.

    No full text
    <p>(A) Quantification of detached cells in cultures treated with DOX (+D) compared to no induction (−D). (B) Ability of DOX-treated cells to replate 4 h after trypsin destruction of attachment proteins, compared to untreated cells. Data are expressed as a percentage of replated untreated cells. (C) Proportion of apoptotic cells in DOX treated (grey bars) compared to untreated (black bars) T47D-ELF5-V5 cells, measured by flow cytometry using the M30 antibody. (D) Expression and activation of key cell adhesion proteins following DOX induction of ELF5-V5 expression.</p

    Visualization of the transcriptional functions of ELF5 in breast cancer.

    No full text
    <p>Affymetrix transcript profiling following induction of ELF5 in T47D and MCF7 luminal breast cancer cells, analysed by LIMMA and GSEA. <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001461#s2" target="_blank">Results</a> are visualized using the enrichment map plug-in for Cytoscape. Each circular node is a gene set with diameter proportional to the number of genes. The outer node color represents the magnitude and direction of enrichment (see scale) in T47D cells, inner node color enrichment in MCF7 cells. Thickness of the edges (green lines) is proportional to the similarity of gene sets between linked nodes. The most related clusters are placed nearest to each other. The functions of prominent clusters are shown. The network can be examined in detail using the scalable PDF in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001461#pbio.1001461.s004" target="_blank">Figure S4</a>.</p
    corecore