25 research outputs found

    Photo-induced luminescence

    Full text link
    The present paper is a critical review dealing with the characteristics, reaction mechanisms and photoproducts, instrumentation and analytical applications of the photo-induced either chemiluminescence or fluorescence. Special attention is paid to the determination of pesticides by continuous-flow methodologies. The paper is divided into several sections covering the most relevant published papers.Catalá Icardo, M.; Martínez Calatayud, JM. (2008). Photo-induced luminescence. Critical Reviews in Analytical Chemistry. 38(2):118-130. doi:10.1080/10408340802039609S118130382Lukasiewicz, R. J., & Fitzgerald, J. M. (1973). Digital integration method for fluorimetric studies of photochemically unstable compounds. Analytical Chemistry, 45(3), 511-517. doi:10.1021/ac60325a002Aaron, J. J., Villafranca, J. E., White, V. R., & Fitzgerald, J. M. (1976). A Quantitative Photochemical-Fluorimetric Method for Measurement of Nonfluorescent Vitamin K1. Applied Spectroscopy, 30(2), 159-162. doi:10.1366/000370276774456408Coly, A., & Aaron, J.-J. (1998). Fluorimetric analysis of pesticides: Methods, recent developments and applications. Talanta, 46(5), 815-843. doi:10.1016/s0039-9140(97)00366-4Aaron, J.-J., & Coly, A. (2000). Luminescence methods in pesticide analysis. Applications to the environment. Analusis, 28(8), 699-709. doi:10.1051/analusis:2000280699Catalá Icardo, M., Garcı́a Mateo, J. V., & Martı́nez Calatayud, J. (2002). Multicommutation as a powerful new analytical tool. TrAC Trends in Analytical Chemistry, 21(5), 366-378. doi:10.1016/s0165-9936(02)00505-8Coly, A. (1999). Photochemically-induced fluorescence determination of sulfonylurea herbicides using micellar media. Talanta, 49(1), 107-117. doi:10.1016/s0039-9140(98)00349-xWerkhoven-Goewie, C. E., Boon, W. M., Praat, A. J. J., Frei, R. W., Brinkman, U. A. T., & Little, C. J. (1982). Preconcentration and LC analysis of chlorophenols, using a styrene-divinyl-benzene copolymeric sorbent and photochemical reaction detection. Chromatographia, 16(1), 53-59. doi:10.1007/bf02258869Scholten, A. H. M. T., Welling, P. L. M., Brinkman, U. A. T., & Frei, R. W. (1980). Use of PTFE coils in post-column photochemical reactors for liquid chromatograph — application to pharmaceuticals. Journal of Chromatography A, 199, 239-248. doi:10.1016/s0021-9673(01)91376-7Batley, G. E. (1984). Use of Teflon components in photochemical reactors. Analytical Chemistry, 56(12), 2261-2262. doi:10.1021/ac00276a066Engelhardt, H., & Neue, U. D. (1982). Reaction detector with three dimensional coiled open tubes in HPLC. Chromatographia, 15(7), 403-408. doi:10.1007/bf02261598Coly, A., & Aaron, J.-J. (1994). Photochemical–spectrofluorimetric method for the determination of several aromatic insecticides. The Analyst, 119(6), 1205-1209. doi:10.1039/an9941901205ALBERTGARCIA, J., ICARDO, M., & CALATAYUD, J. (2006). Analytical strategy photodegradation/chemiluminescence/continuous-flow multicommutation methodology for the determination of the herbicide Propanil. Talanta, 69(3), 608-614. doi:10.1016/j.talanta.2005.10.044Coly, A., & Aaron, J.-J. (1998). Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Analytica Chimica Acta, 360(1-3), 129-141. doi:10.1016/s0003-2670(97)00721-6Poulsen, J. B., Birks, K. S., Gandelman, M. S., & Birks, J. W. (1986). Crocheted PTFE reactors for post-column photochemistry in HPLC. Chromatographia, 22(7-12), 231-234. doi:10.1007/bf02268764Martínez Calatayud, J. 1988.Flow Injection Analysis of Pharmaceuticals. Automation in the Laboratory, 458London, UK: Taylor and Francis Ltd.Palomeque, M., Garcı́a Bautista, J. ., Catalá Icardo, M., Garcı́a Mateo, J. ., & Martı́nez Calatayud, J. (2004). Photochemical-chemiluminometric determination of aldicarb in a fully automated multicommutation based flow-assembly. Analytica Chimica Acta, 512(1), 149-156. doi:10.1016/j.aca.2004.02.031Chivulescu, A., Catalá-Icardo, M., Garcı́a Mateo, J. ., & Martı́nez Calatayud, J. (2004). New flow-multicommutation method for the photo-chemiluminometric determination of the carbamate pesticide asulam. Analytica Chimica Acta, 519(1), 113-120. doi:10.1016/j.aca.2004.05.046PAWLICOVÁ, Z., ALBERT-GARCÍA, J. R., SAHUQUILLO, I., GARCÍA MATEO, J. V., CATALÁ ICARDO, M., & MARTÍNEZ CALATAYUD, J. (2006). Chemiluminescent Determination of the Pesticide Bromoxynil by On-line Photodegradation in a Flow-Injection System. Analytical Sciences, 22(1), 29-34. doi:10.2116/analsci.22.29Mervartová, K., Calatayud, J. M., & Icardo, M. C. (2005). A Fully Automated Assembly Using Solenoid Valves for the Photodegradation and Chemiluminometric Determination of the Herbicide Chlorsulfuron. Analytical Letters, 38(1), 179-194. doi:10.1081/al-200043477Coly, A., & Aaron, J.-J. (1999). Sensitive and rapid flow injection analysis of sulfonylurea herbicides in water with micellar-enhanced photochemically induced fluorescence detection. Analytica Chimica Acta, 392(2-3), 255-264. doi:10.1016/s0003-2670(99)00229-9Garcı́a-Campaña, A. M., Aaron, J.-J., & Bosque-Sendra, J. M. (2001). Micellar-enhanced photochemically induced fluorescence detection of chlorophenoxyacid herbicides. Flow injection analysis of mecoprop and 2,4-dichlorophenoxyacetic acid. Talanta, 55(3), 531-539. doi:10.1016/s0039-9140(01)00470-2Parrilla�V�zquez, P., Gil�Garc�a, M. D., Barranco�Mart�nez, D., & Mart�nez�Galera, M. (2005). Application of coupled-column liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection to the determination of pyrethroid insecticides in vegetable samples. Analytical and Bioanalytical Chemistry, 381(6), 1217-1225. doi:10.1007/s00216-004-3043-xIrace-Guigand, S., Leverend, E., Seye, M. D. G., & Aaron, J. J. (2005). A new on-line micellar-enhanced photochemically-induced fluorescence method for determination of phenylurea herbicide residues in water. Luminescence, 20(3), 138-142. doi:10.1002/bio.817Liu, L., & Guo, Q.-X. (2002). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 42(1/2), 1-14. doi:10.1023/a:1014520830813Frankewich, R. P., Thimmaiah, K. N., & Hinze, W. L. (1991). Evaluation of the relative effectiveness of different water-soluble .beta.-cyclodextrin media to function as fluorescence enhancement agents. Analytical Chemistry, 63(24), 2924-2933. doi:10.1021/ac00024a023Patel, B. M., Moye, H. A., & Weinberger, R. (1991). Postcolumn formation of fluorophores from nitrogenous pesticides by UV photolysis. Talanta, 38(8), 913-922. doi:10.1016/0039-9140(91)80272-2Torrents, A., Anderson, B. G., Bilboulian, S., Johnson, W. E., & Hapeman, C. J. (1997). Atrazine Photolysis:  Mechanistic Investigations of Direct and Nitrate-Mediated Hydroxy Radical Processes and the Influence of Dissolved Organic Carbon from the Chesapeake Bay. Environmental Science & Technology, 31(5), 1476-1482. doi:10.1021/es9607289Dogliotti, L., & Hayon, E. (1967). Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. The Journal of Physical Chemistry, 71(8), 2511-2516. doi:10.1021/j100867a019Pérez-Ruiz, T. (2001). Flow injection determination of methamidophos using online photo-oxidation and fluorimetric detection. Talanta, 54(5), 989-995. doi:10.1016/s0039-9140(01)00369-1Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). FLOW INJECTION SPECTROFLUORIMETRIC DETERMINATION OF MALATHION IN ENVIRONMENTAL SAMPLES USING ON-LINE PHOTOOXIDATION. Analytical Letters, 35(7), 1239-1250. doi:10.1081/al-120005976Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). Fluorimetric determination of arsanilic acid by flow-injection analysis using on-line photo-oxidation. Analytical and Bioanalytical Chemistry, 372(2), 387-390. doi:10.1007/s00216-001-1173-yPérez-Ruiz, T., Martı́nez-Lozano, C., Tomás, V., & Martı́n, J. (2001). Flow-injection fluorimetric method for the determination of dimethylarsinic acid using on-line photo-oxidation. Analytica Chimica Acta, 447(1-2), 229-235. doi:10.1016/s0003-2670(01)01299-5Baird, C. 1995.Environmental Chemistry, 509–510. New York: W. H. Freeman and Company.Bauer, R., & Fallmann, H. (1997). The Photo-Fenton Oxidation — A cheap and efficient wastewater treatment method. Research on Chemical Intermediates, 23(4), 341-354. doi:10.1163/156856797x00565Huston, P. L., & Pignatello, J. J. (1999). Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 33(5), 1238-1246. doi:10.1016/s0043-1354(98)00330-3CATASTINI, C., SARAKHA, M., MAILHOT, G., & BOLTE, M. (2002). Iron (III) aquacomplexes as effective photocatalysts for the degradation of pesticides in homogeneous aqueous solutions. The Science of The Total Environment, 298(1-3), 219-228. doi:10.1016/s0048-9697(02)00219-xZepp, R. G., Schlotzhauer, P. F., & Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environmental Science & Technology, 19(1), 74-81. doi:10.1021/es00131a008Pérez-Ruiz, T., Lozano, C. M., Tomás, V., & Martı́n, J. (2003). Flow injection chemiluminescence determination of carbaryl using photolytic decomposition and photogenerated tris (2,2′-bipyridyl)ruthenium(III). Analytica Chimica Acta, 476(1), 141-148. doi:10.1016/s0003-2670(02)01355-7Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., & Martín, J. (2002). Chemiluminescence determination of carbofuran and promecarb by flow injection analysis using two photochemical reactions. The Analyst, 127(11), 1526-1530. doi:10.1039/b207460pMiles, C. J., & Moye, H. A. (1988). Postcolumn photolysis of pesticides for fluorometric determination by high-performance liquid chromatography. Analytical Chemistry, 60(3), 220-226. doi:10.1021/ac00154a007Soto-Chinchilla, J. J., Garcı́a-Campaña, A. M., Gámiz-Gracia, L., Cuadros-Rodrı́guez, L., & Vidal, J. L. M. (2004). Determination of a N-methylcarbamate pesticide in environmental samples based on the application of photodecomposition and peroxyoxalate chemiluminescent detection. Analytica Chimica Acta, 524(1-2), 235-240. doi:10.1016/j.aca.2004.05.084And, S. T., & Aaron, J. J. (1987). Fluorimetric Determination of Non-Fluorescent Dinitroaniline Derivative Herbicides, Using the Photoreduction of Anthraquinone - 2, 6-Disulfonate. Analytical Letters, 20(12), 1995-2009. doi:10.1080/00032718708078040Miles, C. J., & Anson Moye, H. (1987). High performance liquid chromatography with post-column photolysis of pesticides for generation of fluorophores. Chromatographia, 24(1), 628-632. doi:10.1007/bf02688556Patel, B. M., Moye, H. A., & Weinberger, R. (1990). Formation of fluorophores from nitrogenous pesticides by photolysis and reaction with OPA-2-mercaptoethanol for fluorescence detection in liquid chromatography. Journal of Agricultural and Food Chemistry, 38(1), 126-134. doi:10.1021/jf00091a027Durand, G., Barceló, D., Albaigés, J., & Mansour, M. (1990). Utilisation of liquid chromatography in aquatic photodegradation studies of pesticides: A comparison between distilled water and seawater. Chromatographia, 29(3-4), 120-124. doi:10.1007/bf02268696Rosen, J. D., Strusz, R. F., & Still, C. C. (1969). Photolysis of phenylurea herbicides. Journal of Agricultural and Food Chemistry, 17(2), 206-207. doi:10.1021/jf60162a046Lay, J. P., Klein, W., & Korte, F. (1975). Beiträge zur ökologischen Chemie C. Chemosphere, 4(3), 161-168. doi:10.1016/0045-6535(75)90094-6Tanaka, F. S., Hoffer, B. L., & Wien, R. G. (1985). Detection of halogenated biphenyls from sunlight photolysis of chlorinated herbicides in aqueous solution. Pesticide Science, 16(3), 265-270. doi:10.1002/ps.2780160309Pelizzetti, E., Maurino, V., Minero, C., Carlin, V., Tosato, M. L., Pramauro, E., & Zerbinati, O. (1990). Photocatalytic degradation of atrazine and other s-triazine herbicides. Environmental Science & Technology, 24(10), 1559-1565. doi:10.1021/es00080a016Chukwudebe, A., March, R. B., Othman, M., & Fukuto, T. R. (1989). Formation of trialkyl phosphorothioate esters from organophosphorus insecticides after exposure to either ultraviolet light or sunlight. Journal of Agricultural and Food Chemistry, 37(2), 539-545. doi:10.1021/jf00086a058Durand, G., De Bertrand, N., & Barceló, D. (1991). Applications of thermospray liquid chromatography-mass spectrometry in photochemical studies of pesticides in water. Journal of Chromatography A, 554(1-2), 233-250. doi:10.1016/s0021-9673(01)88453-3WOLFE, N., ZEPP, R., & PARIS, D. (1978). Carbaryl, propham and chlorpropham: A comparison of the rates of hydrolysis and photolysis with the rate of biolysis. Water Research, 12(8), 565-571. doi:10.1016/0043-1354(78)90134-3Samanidou, V., Fytianos, K., Pfister, G., & Bahadir, M. (1988). Photochemical decomposition of carbamate pesticides in natural waters of northern Greece. Science of The Total Environment, 76(1), 85-92. doi:10.1016/0048-9697(88)90287-2Konstantinou, I. K., Sakkas, V. A., & Albanis, T. A. (2001). Photocatalytic degradation of the herbicides propanil and molinate over aqueous TiO2 suspensions: identification of intermediates and the reaction pathway. Applied Catalysis B: Environmental, 34(3), 227-239. doi:10.1016/s0926-3373(01)00218-1Machado, F., Collin, L., & Boule, P. (1995). Photolysis of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) in aqueous solution. Pesticide Science, 45(2), 107-110. doi:10.1002/ps.2780450203Boule, P., Guyon, C., & Lemaire, J. (1982). Photochemistry and environment IV- Photochemical behaviour of monochlorophenols in dilute aqueous solution. Chemosphere, 11(12), 1179-1188. doi:10.1016/0045-6535(82)90031-5Almansa Lopez, E. (2003). Simultaneous quantification of chlorophenoxyacid herbicides based on time-resolved photochemical derivatization to induce fluorescence in micellar medium. Talanta, 60(2-3), 355-367. doi:10.1016/s0039-9140(03)00109-7Garcia, L. F., Eremin, S., & Aaron, J.-J. (1996). Flow-Injection Analysis of Chlorophenoxyacid Herbicides using Photochemically Induced Fluorescence Detectiona. Analytical Letters, 29(8), 1447-1461. doi:10.1080/00032719608001493Lahuerta Zamora, L., Fuster Mestre, Y., Duart, M. J., Antón Fos, G. M., García Doménech, R., Gálvez Álvarez, J., & Martínez Calatayud, J. (2001). Prediction of the Chemiluminescent Behavior of Pharmaceuticals and Pesticides. Analytical Chemistry, 73(17), 4301-4306. doi:10.1021/ac010133iGómez-Taylor Corominas, B. (2003). Prediction of the chemiluminescent behaviour of phenols and polyphenols. Talanta, 60(2-3), 623-628. doi:10.1016/s0039-9140(03)00105-xPolo Martí, E., Catalá Icardo, M., Lahuerta Zamora, L., Antón Fos, G. M., & Martínez Calatayud, J. (2004). Theoretical prediction of the chemiluminescence behaviour of the ergot alkaloids. Analytica Chimica Acta, 527(2), 177-186. doi:10.1016/j.aca.2004.07.026P�rez-Ruiz, T., Mart�nez-Lozano, C., Tom�s, V., Sanz, A., & Garre, R. (2003). Flow Injection Spectrophotometric Determination of Ferbam Based on a Photochemical Reaction. Microchimica Acta, 142(4), 231-235. doi:10.1007/s00604-003-0027-zRoda, A., Rauch, P., Ferri, E., Girotti, S., Ghini, S., Carrea, G., & Bovara, R. (1994). Chemiluminescent flow sensor for the determination of Paraoxon and Aldicarb pesticides. Analytica Chimica Acta, 294(1), 35-42. doi:10.1016/0003-2670(94)85043-7Maniasso, N., Zagatto, E. A. G., Reis, S., Santos, J. L. M., & Lima, J. L. F. C. (1999). Exploitation of micellar medium for photochemical-spectrofluorimetric flow-injection determination of fenvalerate. Laboratory Automation & Information Management, 34(2), 143-148. doi:10.1016/s1381-141x(99)00016-7Vı́lchez, J. ., Valencia, M. ., Navalón, A., Molinero-Morales, B., & Capitán-Vallvey, L. . (2001). Flow injection analysis of the insecticide imidacloprid in water samples with photochemically induced fluorescence detection. Analytica Chimica Acta, 439(2), 299-305. doi:10.1016/s0003-2670(01)01039-

    Native vs photoinduced chemiluminescence in dimethoate determination

    Full text link
    The determination of dimethoate using either its native chemiluminescent (CL) properties or its photoinduced chemiluminescence obtained by irradiation with a 15W low-pressure mercury lamp was studied. Thereby, two flow injection systems (FIA) with and without irradiation were exhaustively optimized and their analytical characteristics studied. Better sensitivity and selectivity was found in absence of irradiation, due to the enhancing effect of hexadecylpyridinium chloride (HPC), which acted as a sensitizer. In the developed FIA-CL system, the alkaline hydrolysis of dimethoate with NaOH was performed on-line in presence of HPC. The oxidation of the product of hydrolysis with Ce(IV) in hydrochloric medium induced chemiluminescence. The method provided a limit of detection of only 0.05ngmL -1 without any pre-treatment. However, the combination with solid phase extraction allowed the removal of some potential interferents as well as the preconcentration of the pesticide. Finally, the developed method was successfully applied to natural waters with recoveries between 95 and 108%. © 2011 Elsevier B.V.This work was supported by the Ministry of Education and Science of Spain (Project CTM2006-11991) and FEDER funds.Catalá Icardo, M.; López Paz, JL.; Choves Barón, C.; Pena Badena, A. (2012). Native vs photoinduced chemiluminescence in dimethoate determination. ANALYTICA CHIMICA ACTA. 710:81-87. https://doi.org/10.1016/j.aca.2011.10.043S818771

    Development of a photoinduced chemiluminescent method for the determination of the herbicide quinmerac in water

    Full text link
    This paper was published in APPLIED SPECTROSCOPY and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1366/14-07791 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.A new, simple and sensitive method, based on photoinduced chemiluminescence, was developed for the determination of quinmerac. The photoproduct, obtained after UV irradiation in basic medium, was mixed with sodium sulfite (sensitizer), and Ce(IV) (oxidant) in acid medium. A wide linear dynamic range (2-600 ng mL-1) and a limit of detection of 0.6 ng mL-1 were obtained without any pretreatment (0.08 ng mL-1 after solid phase extraction). The determination was performed using a flow injection manifold, which allowed a high throughput (144 h-1). The inter-day reproducibility was 5.6% (n=5), and the intra-day repeatability was 3.9 and 2.9% for 20 and 200 ng mL-1 of quinmerac, respectively (n=21). Finally, the method was applied to surface and ground waters with recoveries ranging from 78.1 to 94.5%.The authors thank the Ministerio de Educacion y Ciencia from Spain and FEDER for financial support, Project CTM2006-11991.Catalá-Icardo, M.; López Paz, JL.; Blázquez Pérez, J. (2015). Development of a photoinduced chemiluminescent method for the determination of the herbicide quinmerac in water. Applied Spectroscopy. 69(10):1199-1204. https://doi.org/10.1366/14-07791S119912046910Rodríguez, V. A., Mazza, S. M., Martínez, G. C., Alvarenga, L., Píccoli, A. B., Ortiz, M. L., & Avanza, M. M. (2007). Uso de reguladores de crescimento para incrementar la productividad de mandarino «clemenules». Revista Brasileira de Fruticultura, 29(1), 48-56. doi:10.1590/s0100-29452007000100012Vieira, C. R. Y. I., Pires, E. J. P., Terra, M. M., Tecchio, M. A., & Vieira, M. do C. (2008). Reguladores vegetais influenciando número e tamanho de células das bagas da uva «Niagara Rosada». Revista Brasileira de Fruticultura, 30(1), 25-30. doi:10.1590/s0100-29452008000100007Deschauer, H., & Kögel-Knabner, I. (1990). Sorption behavior of a new acidic herbicide in soils. Chemosphere, 21(12), 1397-1410. doi:10.1016/0045-6535(90)90044-tSalinas-Castillo, A., Fernández-Sanchez, J. F., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2005). Simple determination of the herbicide napropamide in water and soil samples by room temperature phosphorescence. Pest Management Science, 61(8), 816-820. doi:10.1002/ps.1054Dagnac, T., Garcia-Chao, M., Pulleiro, P., Garcia-Jares, C., & Llompart, M. (2009). Dispersive solid-phase extraction followed by liquid chromatography–tandem mass spectrometry for the multi-residue analysis of pesticides in raw bovine milk. Journal of Chromatography A, 1216(18), 3702-3709. doi:10.1016/j.chroma.2009.02.048ALDER, L., LUDERITZ, S., LINDTNER, K., & STAN, H. (2004). The ECHO technique – the more effective way of data evaluation in liquid chromatography–tandem mass spectrometry analysis. Journal of Chromatography A, 1058(1-2), 67-79. doi:10.1016/s0021-9673(04)01479-7Lacina, O., Urbanova, J., Poustka, J., & Hajslova, J. (2010). Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry. Journal of Chromatography A, 1217(5), 648-659. doi:10.1016/j.chroma.2009.11.098Lacina, O., Zachariasova, M., Urbanova, J., Vaclavikova, M., Cajka, T., & Hajslova, J. (2012). Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1262, 8-18. doi:10.1016/j.chroma.2012.08.097Greulich, K., & Alder, L. (2008). Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Analytical and Bioanalytical Chemistry, 391(1), 183-197. doi:10.1007/s00216-008-1935-xWode, F., Reilich, C., van Baar, P., Dünnbier, U., Jekel, M., & Reemtsma, T. (2012). Multiresidue analytical method for the simultaneous determination of 72 micropollutants in aqueous samples with ultra high performance liquid chromatography–high resolution mass spectrometry. Journal of Chromatography A, 1270, 118-126. doi:10.1016/j.chroma.2012.10.054Romero-González, R., Frenich, A. G., & Vidal, J. L. M. (2008). Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta, 76(1), 211-225. doi:10.1016/j.talanta.2008.02.041Mantzos, N., Karakitsou, A., Zioris, I., Leneti, E., & Konstantinou, I. (2013). QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. International Journal of Environmental Analytical Chemistry, 93(15), 1566-1584. doi:10.1080/03067319.2013.803282Vandecasteele, K., Gaus, I., Debreuck, W., & Walraevens, K. (2000). Identification and Quantification of 77 Pesticides in Groundwater Using Solid Phase Coupled to Liquid−Liquid Microextraction and Reversed-Phase Liquid Chromatography. Analytical Chemistry, 72(14), 3093-3101. doi:10.1021/ac991359cIcardo, M. (2003). FI-on line photochemical reaction for direct chemiluminescence determination of photodegradated chloramphenicol. Talanta, 60(2-3), 405-414. doi:10.1016/s0039-9140(03)00074-2Sun, S., & Lu, J. (2006). Flow-injection post chemiluminescence determination of atropine sulfate. Analytica Chimica Acta, 580(1), 9-13. doi:10.1016/j.aca.2006.07.049Pinna, M. V., & Pusino, A. (2012). Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere, 86(6), 655-658. doi:10.1016/j.chemosphere.2011.11.016Yu, X., Jiang, Z., Wang, Q., & Guo, Y. (2010). Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchimica Acta, 171(1-2), 17-22. doi:10.1007/s00604-010-0401-6Zhang, J., Li, J., & Tu, Y. (2009). Flow injection determination of benzhexol based on its sensitizing effect on the chemiluminescent reaction of Ce(IV)-sulfite. Luminescence, 25(4), 317-321. doi:10.1002/bio.1154AL-ARFAJ, N. A., AL-ABDULKAREEM, E. A., & ALY, F. A. (2009). Flow-Injection Chemiluminometric Determination of Pioglitazone HCl by Its Sensitizing Effect on the Cerium-Sulfite Reaction. Analytical Sciences, 25(3), 401-406. doi:10.2116/analsci.25.401Liu, H., Ren, J., Hao, Y., Ding, H., He, P., & Fang, Y. (2006). Determination of metoprolol tartrate in tablets and human urine using flow-injection chemiluminescence method. Journal of Pharmaceutical and Biomedical Analysis, 42(3), 384-388. doi:10.1016/j.jpba.2006.04.008SUN, H., LI, L., & CHEN, X. (2006). Flow-Injection Chemiluminescence Determination of Ofloxacin and Levofloxacin in Pharmaceutical Preparations and Biological Fluids. Analytical Sciences, 22(8), 1145-1149. doi:10.2116/analsci.22.1145Aly, F. (2001). Flow-injection chemiluminometric analysis of some benzamides by their sensitizing effect on the cerium-sulphite reaction. Talanta, 54(4), 715-725. doi:10.1016/s0039-9140(01)00320-4Sun, C., Lian, N., Zhao, H., Yi, L., & Jin, L. (2004). Flow Injection Determination of Lomefloxacin Based on Photochemically Sensitized Chemiluminescence. Microchimica Acta, 148(1-2). doi:10.1007/s00604-004-0253-zNie, L.-H., Zhao, H.-C., Wang, X., Yi, L., Lu, Y., Jin, L.-P., & Ma, H.-M. (2002). Determination of lomefloxacin by terbium sensitized chemiluminescence method. Analytical and Bioanalytical Chemistry, 374(7-8), 1187-1190. doi:10.1007/s00216-002-1553-yMeseguer-Lloret, S., Torres-Cartas, S., & Gómez-Benito, M. C. (2010). Flow injection photoinduced chemiluminescence determination of imazalil in water samples. Analytical and Bioanalytical Chemistry, 398(7-8), 3175-3182. doi:10.1007/s00216-010-4227-1Catalá-Icardo, M., López-Paz, J. L., Choves-Barón, C., & Peña-Bádena, A. (2012). Native vs photoinduced chemiluminescence in dimethoate determination. Analytica Chimica Acta, 710, 81-87. doi:10.1016/j.aca.2011.10.043Torres-Cartas, S., Gómez-Benito, C., & Meseguer-Lloret, S. (2011). FI on-line chemiluminescence reaction for determination of MCPA in water samples. Analytical and Bioanalytical Chemistry, 402(3), 1289-1296. doi:10.1007/s00216-011-5567-1Gómez-Benito, C., Meseguer-Lloret, S., & Torres-Cartas, S. (2013). Sensitive determination of Fenamiphos in water samples by flow injection photoinduced chemiluminescence. International Journal of Environmental Analytical Chemistry, 93(2), 152-165. doi:10.1080/03067319.2012.663755Hamilton, D. J., Ambrus, Á., Dieterle, R. M., Felsot, A. S., Harris, C. A., Holland, P. T., … Wong, S.-S. (2003). Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure and Applied Chemistry, 75(8), 1123-1155. doi:10.1351/pac20037508112

    Development of hybrid monoliths incorporating metal¿organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples

    Full text link
    [EN] A novel coating based on hybrid monolith with metal-organic framework (MOF) onto conventional Teflon-coated magnetic stir bars was developed. For this purpose, the external surface of the Teflon stir bar was firstly vinylized in order to immobilize a glycidyl methacrylate (GMA)-based polymer onto the magnet. Then, an amino-modified MOF of type MIL-101 (NH2-MIL-101(Al)) was covalently attached to the GMA-based monolith. After the synthesis process, several parameters affecting extraction of target estrogens by stir bar sorptive extraction (SBSE) including pH, ionic strength, extraction time, stirring rate, desorption solvent, and desorption time were also investigated. The resulting hybrid monolith was evaluated as SBSE sorbent for extraction of three estrogens (estrone, 17 beta-estradiol, estriol) and synthetic 17 beta-ethinylestradiol from water and human urine samples followed by HPLC with fluorescence detection (excitation and emission wavelengths, 280 and 310 nm, respectively). Under the optimal experimental conditions, the analytical figures of the method were established, achieving satisfactory limits of detection in the range of 0.015-0.58 mu g L-1, recovery results ranging from 70 to 95% with RSD less than 6%, and precision values (intra- and inter-extraction units) below 6%.H. Martinez-Perez-Cejuela thanks the MSIU for a PhD FPU grant (ref. FPU18/02179). S. Z., I. L., and D. S. acknowledge the financial support of the Charles University (Project SVV 260 548), Charles University Grant Agency (Project GAUK No. 1070120), and EFSA-CDN project (no. CZ.02.1.01/0.0/0.0/16_019/0000841) cofunded by ERDF. This article is based upon work from the Sample Preparation Task Force and Network, supported by the Division of Analytical Chemistry of the European Chemical Society.Zatrochová, S.; Martínez-Pérez-Cejuela, H.; Catalá-Icardo, M.; Simó-Alfonso, EF.; Lhotská, I.; Atínský, D.; Herrero-Martínez, JM. (2022). Development of hybrid monoliths incorporating metal¿organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Microchimica Acta. 189(3):1-10. https://doi.org/10.1007/s00604-022-05208-6110189

    Determination of diquat by flow injection-chemiluminescence

    Full text link
    A simple, economic, sensitive and rapid method for the determination of the pesticide diquat was described. This new method was based on the coupling of flow injection analysis methodology and direct chemiluminescent detection; to the authors' knowledge, this approach had not been used up to now with this pesticide. It was based on its oxidation with ferricyanide in alkaline medium; significant improvements in the analytical signal were achieved by using high temperatures and quinine as sensitiser. Its high throughput (144 h(-1)), together with its low limit of detection (2 ng mL(-1)), achieved without need of preconcentration steps, permitted the reliable quantification of diquat over the linear range of (0.01-0.6) mu g mL(-1) in samples from different origins (river, tap, mineral and ground waters), even in the presence of a 40-fold concentration of paraquat, a pesticide commonly present in the commercial formulations of diquat.López-Paz, JL.; Catalá-Icardo, M.; Antón Garrido, B. (2009). Determination of diquat by flow injection-chemiluminescence. Analytical and Bioanalytical Chemistry. 394(4):1073-1079. doi:10.1007/s00216-009-2609-zS107310793944Hayes WJ Jr, Laws ER Jr (1991) Handbook of pesticide toxicology, Academic Press, San DiegoUS Environmental Protection Agency. http://www.epa.gov/06WDW/contaminants/dw_contamfs/diquat.html (accessed in August 2008)Horwitz W (2000) Official methods of analysis of AOAC International 17th edition. AOAC International, Gaithersburg, MD, USAHara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Anal Sci 23(5):523–531Rial Otero R, Cancho Grande B, Pérez Lamela C, Simal Gandara J, Aria Estevez M (2006) J Chromatogr Sci 44(9):539–542Aramendia MA, Borau V, Lafont F, Marinas JM, Moreno JM, Porras JM, Urbano FJ (2006) Food Chem 97(1):181–188Nuñez O, Moyano E, Galceran MT (2004) Anal Chim Acta 525(2):183–190Martinez Vidal JL, Belmonte Vega A, Sanchez Lopez FJ, Garrido Frenich AJ (2004) Chromatogr A 1050(2):179–184Lee XP, Kumazawa T, Fujishiro M, Hasegawa C, Arinobu T, Seno H, Sato K (2004) J Mass Spectrom 39(10):1147–1152De Almeida RM, Yonamine M (2007) J Chromatogr B 853(1–2):260–264De Souza D, Machado SAS (2006) Electroanalysis 18(9):862–872De Souza D, Da Silva MRC, Machado SAS (2006) Electroanalysis 18(23):2305–2313Picó Y, Rodriguez R, Manes J (2003) Trends Anal Chem 22(3):133–151Ishiwata T (2004) Bunseki Kagaku 53(8):863–864Carneiro MC, Puignou L, Galcerán MT (2000) Anal Chim Acta 408:263Luque M, Rios A, Valcarcel M (1998) Analyst 123(11):2383–2387Perez Ruiz T, Martínez Lozano C, Tomas V (1991) Int J Environ Anal Chem 44(4):243–252Perez Ruiz T, Martínez Lozano C, Tomas V (1991) Anal Chim Acta 244(1):99–104Townshend A (1990) Analyst 115:495–500López Paz JL, Catalá Icardo M (2008) Anal Chim Acta 625:173–179Pawlicová Z, Sahuquillo I, Catalá Icardo M, García Mateo JV, Martínez Calatayud J (2006) Anal Sci 22:29–34Albert García JR, Catalá Icardo M, Martínez Calatayud J (2006) Talanta 69:608–614Tomlin CDS (1997) The pesticide manual, 11th edn.The British Crop Protection CouncilUKCatalá-Icardo M, Martínez-Calatayud J (2008) Crit Rev Anal Chem 38:118–130Ministerio de Medio Ambiente y Medio Rural y Marino. http://www.marm.es/ (accessed in September 2008)US Environmental Protection Agency. http://www.epa.gov/OGWWDW/contaminants (accessed in October 2008

    Photoinduced chemiluminescence determination of carbamate pesticides

    Full text link
    A liquid chromatography method with post-column photoinduced chemiluminescence (PICL) detection is proposed for the simultaneous determination of eight carbamate pesticides, namely aldicarb, butocarboxim, ethiofencarb, methomyl, methiocarb, thiodicarb, thiofanox and thiophanate-methyl. After chromatographic separation, quinine (sensitizer) was incorporated and the flow passed through an UV lamp (67 s of irradiation time) to obtain the photoproducts, which reacted with acidic Ce(IV) and provided a CL emission. The PICL method showed great selectivity for carbamate pesticides containing sulphur in their chemical structure. A solid-phase extraction process increased sensitivity (LODs ranging from 0.06 to 0.27 ng mL−1) and allowed the carbamate pesticides in surface and ground water samples to be determined, with recoveries in the range 87 110% (except for thiophanate-methyl, whose recoveries were between 60 and 75%). The intra- and inter-day precision was evaluated, with RSD ranging from 1.1 to 7.5% and from 2.6 to 12.3%, respectively. A discussion about the PICL mechanism is also included.Catalá-Icardo, M.; Meseguer-Lloret, S.; Torres-Cartas, S. (2016). Photoinduced chemiluminescence determination of carbamate pesticides. Photochemical and Photobiological Sciences. 15:626-634. doi:10.1039/c6pp00056hS62663415Santaladchaiyakit, Y., Srijaranai, S., & Burakham, R. (2012). Methodological aspects of sample preparation for the determination of carbamate residues: A review. Journal of Separation Science, 35(18), 2373-2389. doi:10.1002/jssc.201200431Pesticides in Ground and Drinking water, ed. M. Fielding, Water Pollution Research Report 27, Commission of the European Communities, Brussels, 1991Melchert, W. R., & Rocha, F. R. P. (2010). A greener and highly sensitive flow-based procedure for carbaryl determination exploiting long pathlength spectrophotometry and photochemical waste degradation. Talanta, 81(1-2), 327-333. doi:10.1016/j.talanta.2009.12.005Chu, N., & Fan, S. (2009). Sequential injection kinetic spectrophotometric determination of quaternary mixtures of carbamate pesticides in water and fruit samples using artificial neural networks for multivariate calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(5), 1173-1181. doi:10.1016/j.saa.2009.09.030Pacioni, N. L., & Veglia, A. V. (2007). Determination of poorly fluorescent carbamate pesticides in water, bendiocarb and promecarb, using cyclodextrin nanocavities and related media. Analytica Chimica Acta, 583(1), 63-71. doi:10.1016/j.aca.2006.10.010Yang, E.-Y., & Shin, H.-S. (2013). Trace level determinations of carbamate pesticides in surface water by gas chromatography–mass spectrometry after derivatization with 9-xanthydrol. Journal of Chromatography A, 1305, 328-332. doi:10.1016/j.chroma.2013.07.055Fernández-Ramos, C., Šatínský, D., & Solich, P. (2014). New method for the determination of carbamate and pyrethroid insecticides in water samples using on-line SPE fused core column chromatography. Talanta, 129, 579-585. doi:10.1016/j.talanta.2014.06.037Wang, X., Cheng, J., Wang, X., Wu, M., & Cheng, M. (2012). Development of an improved single-drop microextraction method and its application for the analysis of carbamate and organophosphorus pesticides in water samples. The Analyst, 137(22), 5339. doi:10.1039/c2an35623fFytianos, K., Pitarakis, K., & Bobola, E. (2006). Monitoring ofN-methylcarbamate pesticides in the Pinios River (central Greece) by HPLC. International Journal of Environmental Analytical Chemistry, 86(1-2), 131-145. doi:10.1080/03067310500248171Fu, L., Liu, X., Hu, J., Zhao, X., Wang, H., & Wang, X. (2009). Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Analytica Chimica Acta, 632(2), 289-295. doi:10.1016/j.aca.2008.11.020Shi, Z., Hu, J., Li, Q., Zhang, S., Liang, Y., & Zhang, H. (2014). Graphene based solid phase extraction combined with ultra high performance liquid chromatography–tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. Journal of Chromatography A, 1355, 219-227. doi:10.1016/j.chroma.2014.05.085Latrous El Atrache, L., Ben Sghaier, R., Bejaoui Kefi, B., Haldys, V., Dachraoui, M., & Tortajada, J. (2013). Factorial design optimization of experimental variables in preconcentration of carbamates pesticides in water samples using solid phase extraction and liquid chromatography–electrospray-mass spectrometry determination. Talanta, 117, 392-398. doi:10.1016/j.talanta.2013.09.032Cahill, M. G., Caprioli, G., Stack, M., Vittori, S., & James, K. J. (2011). Semi-automated liquid chromatography–mass spectrometry (LC–MS/MS) method for basic pesticides in wastewater effluents. Analytical and Bioanalytical Chemistry, 400(2), 587-594. doi:10.1007/s00216-011-4781-1López-Paz, J. L., Catalá-Icardo, M., & Langa-Sánchez, A. (2014). Determination ofN-methylcarbamate pesticides using flow injection with photoinduced chemiluminescence detection. International Journal of Environmental Analytical Chemistry, 94(6), 606-617. doi:10.1080/03067319.2013.879295López-Paz, J. L., & Catalá-Icardo, M. (2011). Analysis of Pesticides by Flow Injection Coupled with Chemiluminescent Detection: A Review. Analytical Letters, 44(1-3), 146-175. doi:10.1080/00032719.2010.500788Huertas-Pérez, J. F., & García-Campaña, A. M. (2008). Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Analytica Chimica Acta, 630(2), 194-204. doi:10.1016/j.aca.2008.09.047Pérez-Ruiz, T., Martínez-Lozano, C., & García, M. D. (2007). Determination of N-methylcarbamate pesticides in environmental samples by an automated solid-phase extraction and liquid chromatographic method based on post-column photolysis and chemiluminescence detection. Journal of Chromatography A, 1164(1-2), 174-180. doi:10.1016/j.chroma.2007.07.006Orejuela, E., & Silva, M. (2003). Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate-chemiluminescence detection. Journal of Chromatography A, 1007(1-2), 197-201. doi:10.1016/s0021-9673(03)00934-8Catalá-Icardo, M., Lahuerta-Zamora, L., Torres-Cartas, S., & Meseguer-Lloret, S. (2014). Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). Journal of Chromatography A, 1341, 31-40. doi:10.1016/j.chroma.2014.03.024Galera, M. M., García, M. D. G., & Valverde, R. S. (2006). Determination of nine pyrethroid insecticides by high-performance liquid chromatography with post-column photoderivatization and detection based on acetonitrile chemiluminescence. Journal of Chromatography A, 1113(1-2), 191-197. doi:10.1016/j.chroma.2006.02.013Meseguer-Lloret, S., Torres-Cartas, S., Catalá-Icardo, M., & Gómez-Benito, C. (2015). Selective and Sensitive Chemiluminescence Determination of MCPB: Flow Injection and Liquid Chromatography. Applied Spectroscopy, 70(2), 312-321. doi:10.1177/0003702815620133Pesticide properties database (PPDB). University of Hertfordshire, http://sitem.herts.ac.uk/aeru/ppdb/en/index.htmPulgarín, J. A. M., Molina, A. A., & López, P. F. (2006). Automatic chemiluminescence-based determination of carbaryl in various types of matrices. Talanta, 68(3), 586-593. doi:10.1016/j.talanta.2005.04.051Waseem, A., Yaqoob, M., & Nabi, A. (2007). Flow-injection determination of carbaryl and carbofuran based on KMnO4–Na2SO3 chemiluminescence detection. Luminescence, 22(4), 349-354. doi:10.1002/bio.970Tsogas, G. Z., Giokas, D. L., Nikolakopoulos, P. G., Vlessidis, A. G., & Evmiridis, N. P. (2006). Determination of the pesticide carbaryl and its photodegradation kinetics in natural waters by flow injection–direct chemiluminescence detection. Analytica Chimica Acta, 573-574, 354-359. doi:10.1016/j.aca.2005.11.058Xie, Z., Ouyang, X., Guo, L., Lin, X., & Chen, G. (2005). Determination of carbofuran by flow-injection with chemiluminescent detection. Luminescence, 20(3), 226-230. doi:10.1002/bio.825Liu, H., Hao, Y., Ren, J., He, P., & Fang, Y. (2007). Determination of tsumacide residues in vegetable samples using a flow-injection chemiluminescence method. Luminescence, 22(4), 302-308. doi:10.1002/bio.963Amorim, C. M. P. G., Albert-García, J. R., Montenegro, M. C. B. S., Araújo, A. N., & Calatayud, J. M. (2007). Photo-induced chemiluminometric determination of Karbutilate in a continuous-flow Multicommutation assembly. Journal of Pharmaceutical and Biomedical Analysis, 43(2), 421-427. doi:10.1016/j.jpba.2006.07.006DeMarco, A. C., & Hayes, E. R. (1979). Photodegradation of thiolcarbamate herbicides. Chemosphere, 8(5), 321-326. doi:10.1016/0045-6535(79)90117-6Prevention, Pesticides and Toxic Substances (7508C) Reregistration eligibility decision. Thiophanate-methyl, Environmental Protection Agency (EPA), 2005Sanz-Asensio, J., Plaza-Medina, M., Martı́nez-Soria, M. ., & Pérez-Clavijo, M. (1999). Study of photodegradation of the pesticide ethiofencarb in aqueous and non-aqueous media, by gas chromatography–mass spectrometry. Journal of Chromatography A, 840(2), 235-247. doi:10.1016/s0021-9673(99)00219-8D. Barceló and M. C.Hennion, Techniques and instrumentation in analytical chemistry, Elsevier, Amsterdam, The Netherlands, 1997, vol. 19Capitán-Vallvey, L. (2000). Chemiluminescence determination of sodium 2-mercaptoethane sulfonate by flow injection analysis using cerium(IV) sensitized by quinine. Talanta, 51(6), 1155-1161. doi:10.1016/s0039-9140(00)00291-5NIE, L., MA, H., SUN, M., LI, X., SU, M., & LIANG, S. (2003). Direct chemiluminescence determination of cysteine in human serum using quinine–Ce(IV) system. Talanta, 59(5), 959-964. doi:10.1016/s0039-9140(02)00649-5J. R. Lakowicz , Principles of Fluorescence Spectroscopy, 3rd edn, Springer, New York, 2006Hamilton, D. J., Ambrus, Á., Dieterle, R. M., Felsot, A. S., Harris, C. A., Holland, P. T., … Wong, S.-S. (2003). Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure and Applied Chemistry, 75(8), 1123-1155. doi:10.1351/pac20037508112

    Flow injection-photoinduced-chemiluminescence determination of ziram and zineb

    Full text link
    A simple, sensitive and rapid method for the determination of the pesticides ziram and zineb was described. This new method was based on the coupling of FIA methodology and direct chemiluminescent detection; this approach had not been used up to now with these pesticides. The additional use of an 'on line' photochemical reaction, which was performed by using a photoreactor consisting of a long piece of PTFE helically coiled around a 15 W low pressure lamp, increased by a factor >20 the chemiluminometric response of the pesticides. An additional 3-fold improvement in the analytical signal was also achieved by using quinine as sensitizer. The obtained throughputs were very high (121 and 101 h(-1) for ziram and zineb, respectively); this feature together with its low limit of detection (1 ngmL(-1)) makes this method particularly well suited to routine analyses of environmental samples. On the other hand, its applicability to two members of the dithiocarbamate family of pesticides, makes it promising for the determination of the rest of the members of this family. The method was demonstrated by application to spiked water samples from different origins (ground, river and irrigation).The authors would like to thank Ministry of Education and Science from Spain for financial support: Project CTM2006-11991 and FEDER funds.López-Paz, JL.; Catalá-Icardo, M. (2008). Flow injection-photoinduced-chemiluminescence determination of ziram and zineb. Analytica Chimica Acta. 625(2):173-179. https://doi.org/10.1016/j.aca.2008.07.027S173179625

    FI-chemiluminometric study of thiazides by on-line photochemical reaction

    Full text link
    The present manuscript deals with a simple and sensitive flow-injection method for the chemiluminescent determination of thiazides. The method is based on the on-line photodegradation and chemiluminescent determination of the resulting photo-fragments. The on-line photodegradation is performed in basic medium by using a photoreactor consisting of a 550 cm long x 0.8 mm ID piece of PTFE tubing helically coiled around an 8 W low-pressure mercury lamp. The determination of the photo-irradiated thiazides is performed by a chemiluminescent oxidative reaction with Ce(IV) in sulphuric acid medium. A heterogeneous group of thiazides (indapamide, metolazone, hydroflumethiazide, chlorthalidone and bendroflumethiazide) has been studied. Hydrochlorothiazide was selected as a test substance. The "on-line" photochemical reaction approach allows the sensitive chemiluminescent determination of thiazides which do not present native chemiluminescence in the absence of sensitizers such as Rhodamine 6G. Linear calibration graphs were typically over the range 0.5-12 mug ml(-1) (indapamide, metolazone, hydroflumethiazide and chlorthalidone); and over the range 0.5-5 mug ml(-1) (hydrochlorothiazide). Limits of detection ranged between 0.005 mug ml(-1) (hydrochlorothiazide) and 0.06 mug ml(-1) (bendroflumethiazide). The relative standard deviation for the test substance was 2.0% for 2 mug l(-1) of the drug (n = 11) and the throughput was 65 h(-1) in all cases. The assessment of the photodegradation step on the molecular structure of thiazides was established by recording UV and fluorimetric spectra. The viability of the on-line photoinduced fluorescent determination of hydroflumethiazide and bendroflumethiazide was confirmed. The method was also applied to the determination of hydrochlorothiazide in commercially available formulation. (C) 2004 Elsevier B.V. All rights reserved.Ciborowski, M.; Catalá Icardo, M.; García Mateo, J.; Martínez Calatayud, J. (2004). FI-chemiluminometric study of thiazides by on-line photochemical reaction. Journal of Pharmaceutical and Biomedical Analysis. 36(4):693-700. doi:10.1016/j.jpba.2004.08.02069370036

    Development of a Flow Injection Manifold for Napropamide Determination by Photo-Induced Chemiluminescence

    Full text link
    A new, rapid, and simple method is proposed for the determination of the pesticide napropamide by photo-induced chemiluminescence detection coupled with a flow injection analysis (FIA) system. The emission was obtained by oxidation with periodate in basic medium, of the photoproducts generated on-line by UV irradiation (254 nm) of napropamide in acidic SDS (sodium dodecyl sulfate) medium. The flow method, in combination with the solid phase extraction (SPE) performed off-line with C-18 cartridges, allowed the determination of this pesticide over the 0.8-14.0 mu g L-1 range, with a limit of detection of 0.3 mu g L-1. The relative standard deviation (n = 9) at 2.5 mu g L-1 level was 4.3% for the combined FIA-SPE system. After testing the influence of several potential interfering compounds, including ions and other pesticides, the method was successfully applied to the determination of napropamide in spiked water samples with recoveries between 96-103%.This work was supported by the Ministry of Education and Science of Spain (Project CTM2006-11991) and FEDER funds.Catalá Icardo, M.; López Paz, JL.; Asensio Martín, V. (2012). Development of a Flow Injection Manifold for Napropamide Determination by Photo-Induced Chemiluminescence. Analytical Letters. 45:872-882. https://doi.org/10.1080/00032719.2012.655679S8728824

    Molecular connectivity as a new and relevant tool to predict the analytical behaviour: A survey of chemiluminescence and chromatography

    Full text link
    We present a critical presentation and discussion on molecular connectivity applied to analytical fields, giving special attention to predicting the chemiluminescent behavior of pharmaceuticals and pesticides. Molecular connectivity has been largely applied to predict the therapeutic effects of pharmaceuticals and rarely to predictions in analytical chemistry-basically to chromatographic processes and recently to liquid-phase chemiluminescence. (c) 2005 Elsevier Ltd. All rights reserved.Catalá Icardo, M.; Lahuerta Zamora, L.; Antón-Fos, GM.; Martínez Calatayud, J.; Duart, MJ. (2005). Molecular connectivity as a new and relevant tool to predict the analytical behaviour: A survey of chemiluminescence and chromatography. Trends in Analytical Chemistry. 24(8):782-791. doi:10.1016/j.trac.2005.01.015S78279124
    corecore