1,672 research outputs found
A (Blurry) Vision of the Future: How Leader Rhetoric About Ultimate Goals Influences Performance
One key responsibility of leaders involves crafting and communicating two types of messages—visions and values—that help followers understand the ultimate purpose of their work. Although scholars have long considered how leaders communicate visions and values to establish a sense of purpose, they have overlooked how these messages can be used to establish a shared sense of purpose, which is achieved when multiple employees possess the same understanding of the purpose of work. In this research, we move beyond the traditional focus on leader rhetoric and individual cognition to examine leader rhetoric and shared cognition. We suggest that a specific combination of messages—a large amount of vision imagery combined with a small number of values—will boost performance more than other combinations because it triggers a shared sense of the organization\u27s ultimate goal, and, in turn, enhances coordination. We found support for our predictions in an archival study of 151 hospitals and an experiment with 62 groups of full-time employees. In light of these findings, we conducted exploratory analyses and discovered two dysfunctional practices: leaders tend to (1) communicate visions without imagery and (2) over-utilize value-laden rhetoric
Nitrous Oxide Emissions
End of project reportNitrous oxide (N2O) is one of the three most important greenhouse gases (GHG). Nitrous oxide emissions currently account for approximately one third of GHG emissions from agriculture in Ireland. Emissions of N2O arise naturally from soil sources and from the application of nitrogen (N) in the form of N fertilizers and N in dung and urine deposition by grazing animals at pasture.
Nitrous oxide emission measurements were conducted at three different scales. Firstly, a large-scale field experiment was undertaken to compare emission rates from a pasture receiving three different rates of N fertilizer application and to identify the effects of controlling variables over a two-year period. Variation in emission rates was large both within and between years.
Two contrasting climatic years were identified. The cooler and wetter conditions in year 1 gave rise to considerably lower emission levels than the warmer and drier year 2. However, in both years, peak emissions were associated with fertilizer N applications coincident with rainfall events in the summer months.
A small-plot study was conducted to identify the individual and combined effects of fertilizer, dung and urine applications to grassland. Treatment effects were however, difficult to obtain due to the overriding effects of environmental variables.
Thirdly, through the use of a small-scale mini-lysimeter study, the diurnal nature of N2O emission rates was identified for two distinct periods during the year. The occurrence of a diurnal pattern has important implications for the identification of a measurement period during the day which is representative of the true daily flux.
The research presented aims to identify the nature and magnitude of N2O emissions and the factors which affect emission rates from a grassland in Ireland. Further work is required to integrate the effects of different soil types and contrasting climatic regimes across soil types on N2O emissions.Environmental Protection Agenc
In vitro models of biological barriers for nanomedical research
Nanoconstructs developed for biomedical purposes must overcome diverse biological barriers before reaching the target where playing their therapeutic or diagnostic function. In vivo models are very complex and unsuitable to distinguish the roles plaid by the multiple biological barriers on nanoparticle biodistribution and effect; in addition, they are costly, time-consuming and subject to strict ethical regulation. For these reasons, simplified in vitro models are preferred, at least for the earlier phases of the nanoconstruct development. Many in vitro models have therefore been set up. Each model has its own pros and cons: conventional 2D cell cultures are simple and cost-effective, but the information remains limited to single cells; cell monolayers allow the formation of cell-cell junctions and the assessment of nanoparticle translocation across structured barriers but they lack three-dimensionality; 3D cell culture systems are more appropriate to test in vitro nanoparticle biodistribution but they are static; finally, bioreactors and microfluidic devices can mimicking the physiological flow occurring in vivo thus providing in vitro biological barrier models suitable to reliably assess nanoparticles relocation. In this evolving context, the present review provides an overview of the most representative and performing in vitro models of biological barriers set up for nanomedical research
Pathways for Nutrient Loss to Water; Slurry and Fertilizer Spreading
End of project reportThere are almost 150,000 farms in Ireland and these contribute substantial quantities of N and P to inland and coastal waters. Some of these nutrients are carried from wet soils by overland flow and by leaching from dry soils. Farm practice can reduce the loss from farms by judicious management of nutrients. Improvements are required to diminish export of nutrients without impairing operations on the farm. Literature regarding nutrient loss from agriculture was reviewed in this project and maps were prepared to predict best slurry spreading times around Ireland. Two further maps were prepared to show slurry storage requirement on farms
Green's Relations in Finite Transformation Semigroups
We consider the complexity of Green's relations when the semigroup is given
by transformations on a finite set. Green's relations can be defined by
reachability in the (right/left/two-sided) Cayley graph. The equivalence
classes then correspond to the strongly connected components. It is not
difficult to show that, in the worst case, the number of equivalence classes is
in the same order of magnitude as the number of elements. Another important
parameter is the maximal length of a chain of components. Our main contribution
is an exponential lower bound for this parameter. There is a simple
construction for an arbitrary set of generators. However, the proof for
constant alphabet is rather involved. Our results also apply to automata and
their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1
A Faultine-Based Model of Team Leadership
Modern work teams operate in environments where increasingly salient member differences lead to the emergence of subgroups. Building on findings from the faultline literature, we propose that team members typically organize into three types of subgorups—cliques, coalitions, and cohorts, and that different leader orientations are mandated by each subgroup type
Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer
Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-β/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-β-regulated complex with TGF-β receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-β signals in prostate cancer
Effect of an agri-environmental measure on nitrate leaching from a beef farming system in Ireland
peer-reviewedAgricultural nitrogen (N) management remains a key environmental challenge. Improving N management is a matter of urgency to reduce the serious ecological consequences of the reactive N. Nitrate (NO3−–N) leaching was measured under suckler beef production systems stocked at two intensities: (1) intensive, 210 kg organic N ha−1 with two cut silage harvests; and (2) rural environmental protection scheme (REPS), 170 kg organic N ha−1 with one cut silage harvest. Three replicate plots of each treatment were instrumented with ceramic cups (8 per plot), randomly placed within each plot at a depth of 1 m to collect soil solution for NO3−–N at 50 kPa suction to collecting vessels one week prior to sampling. Samples were taken on a total of 53 sampling dates over 3 winter drainage periods (2002/03, 2003/04 and 2004/05). Over the course of the experiment the mean annual soil solution NO3−–N concentration exceeded the MAC twice out of 15 means (5 treatments over 3 years). The REPS grazing and silage sub treatments had significantly lower mean annual soil solution total oxidized N (TON) concentrations than the respective intensive treatments in years 2 and 3. Annual total NO3−–N losses over the three years in intensive and REPS systems ranged from 55 to 71 and 15 to 20 kg N ha−1, respectively. Mean N surpluses in intensive and REPS systems were 210 and 95 kg ha−1, respectively with the corresponding mean N inputs of 272 and 124 kg N ha−1. The reduction in N inputs under the REPS system results in lower N leaching losses and contributed to a significant reduction in pressures on water quality
Novel applications of long-established histochemical techniques to study nanoparticle-cell interactions at transmission electron microscopy
Alcian blue staining has been used to visualise nanoparticles at transmission electron microscop
- …