14 research outputs found

    Convergence and multiplicities for the Lempert function

    Full text link
    Given a domain ΩC\Omega \subset \mathbb C, the Lempert function is a functional on the space Hol (\D,\Omega) of analytic disks with values in Ω\Omega, depending on a set of poles in Ω\Omega. We generalize its definition to the case where poles have multiplicities given by local indicators (in the sense of Rashkovskii's work) to obtain a function which still dominates the corresponding Green function, behaves relatively well under limits, and is monotonic with respect to the indicators. In particular, this is an improvement over the previous generalization used by the same authors to find an example of a set of poles in the bidisk so that the (usual) Green and Lempert functions differ.Comment: 24 pages; many typos corrected thanks to the referee of Arkiv for Matemati

    Pluricomplex Green and Lempert functions for equally weighted poles

    Full text link
    For Ω\Omega a domain in Cn\mathbb C^n, the pluricomplex Green function with poles a1,...,aNΩa_1, ...,a_N \in \Omega is defined as G(z):=sup{u(z):uPSH(Ω),u(x)logxaj+Cjwhenxaj,j=1,...,N}G(z):=\sup \{u(z): u\in PSH_-(\Omega), u(x)\le \log \|x-a_j\|+C_j \text{when} x \to a_j, j=1,...,N \}. When there is only one pole, or two poles in the unit ball, it turns out to be equal to the Lempert function defined from analytic disks into Ω\Omega by LS(z):=inf{j=1Nνjlogζj:ϕO(D,Ω),ϕ(0)=z,ϕ(ζj)=aj,j=1,...,N}L_S (z) :=\inf \{\sum^N_{j=1}\nu_j\log|\zeta_j|: \exists \phi\in \mathcal {O}(\mathbb D,\Omega), \phi(0)=z, \phi(\zeta_j)=a_j, j=1,...,N \}. It is known that we always have LS(z)GS(z)L_S (z) \ge G_S(z). In the more general case where we allow weighted poles, there is a counterexample to equality due to Carlehed and Wiegerinck, with Ω\Omega equal to the bidisk. Here we exhibit a counterexample using only four distinct equally weighted poles in the bidisk. In order to do so, we first define a more general notion of Lempert function "with multiplicities", analogous to the generalized Green functions of Lelong and Rashkovskii, then we show how in some examples this can be realized as a limit of regular Lempert functions when the poles tend to each other. Finally, from an example where LS(z)>GS(z)L_S (z) > G_S(z) in the case of multiple poles, we deduce that distinct (but close enough) equally weighted poles will provide an example of the same inequality. Open questions are pointed out about the limits of Green and Lempert functions when poles tend to each other.Comment: 25 page

    The Lempert function and the pluricomplex Green function are not equal in the bidisc

    No full text
    We give a counterexample to Coman's conjecture statingthat in convex domains the pluripolar Green function with several poles and weights equals the corresponding Lempert function

    Le cone des fonctions plurisousharmoniques negatives et une conjecture de Coman

    No full text
    Les fonctions plurisousharmoniques n'egatives dans un domaine Omega de C^n forment un c^one convexe. Nous consid'erons les points extr'emaux de ce c^one, et donnons trois exemples. En particulier, nous traitons le cas de la fonction de Green pluricomplexe. Nous calculons celle du bidisque, lorsque les p^oles se situent sur un axe. Nous montrons que cette fonction ne se confonde pas avec la fonction de Lempert correspondante. Cela donne un contre-exemple `a une conjecture de Dan Coman
    corecore