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Abstract We study the geometry of m-regular domains within the Caffarelli—
Nirenberg—Spruck model in terms of barrier functions, envelopes, exhaustion
functions, and Jensen measures. We prove among other things that every m-
hyperconvex domain admits an exhaustion function that is negative, smooth, strictly
m-subharmonic, and has bounded m-Hessian measure.
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1 Introduction

The geometry of the underlying space is usually essential when studying a given
problem in analysis. The starting point of this paper is the model presented by Caf-
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farelli et al. [16] in 1985 that makes it possible to investigate the transition between
potential and pluripotential theories. Their construction relies on Garding’s research
on hyperbolic polynomials [27]. The authors of [16] also provided a very nice appli-
cation to special Lagrangian geometry, which was in itself introduced as an example
within calibrated geometry [30]. With the publications of [9], and [45], many ana-
lysts and geometers became interested in the Caffarelli-Nirenberg—Spruck model. To
mention some references [23,37,47,49,51,64,71]. A usual assumption in these stud-
ies is that the underlying domain should admit a continuous exhaustion function that
is m-subharmonic in the sense of Caffarelli et al. (see Sect. 2 for the definition of
m-subharmonic functions). In this paper, we shall study the geometric properties of
these domains. Let us now give a thorough background on the motivation behind this
paper. It all starts with the following theorem:

Theorem A Assume that Q is a bounded domain in RY, N > 2. Then the following
assertions are equivalent.

(1) 92 is regular at every boundary point yg € 9S2, in the sense that

Jim PWB £ (x) = f (o),
xXeQ

for each continuous function f : 92 — R. Here

PWB f(x) = sup {v(x) ‘v e SH(Q), }i_msu(g) < f(§), VE € 39},
e

and SH(L2) is the space of subharmonic functions defined on £2;
(2) 02 has a strong barrier at every point yg € 9€2 that is subharmonic, i.e., there
exists a subharmonic function u : & — R such that

lim u(x) =0,
X—>Y0
x€Q

and

limsupu(x) <0  forall y € Q\{yo}.
ea

(3) 02 has a weak barrier at every point yg € 92 that is subharmonic, i.e., there
exists a subharmonic function u : 2 — R such that u < 0 on 2 and

lim u(x) =0.
X—)y()

x€Q

(4) Q2 admits an exhaustion function that is negative and subharmonic, i.e., there
exists a non-constant function ¥ : € — R such that for any ¢ € R the set
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{x € Q: ¥(x) < c} is relatively compact in 2. Furthermore, the exhaustion
function should be negative and subharmonic.

(5) 092 is equal to the Jensen boundary w.r.t. the Jensen measures generated by the
cone of functions that are continuous on €2, and subharmonic on £ (see Sect. 2
for definitions).

The idea of a regular boundary point can be traced back to 1911 and 1912 with
the works of Zaremba [70] and Lebesgue [42], respectively, when they constructed
examples that exhibit the existence of irregular points. A decade after these examples,
Perron introduced in 1923 the celebrated envelope construction PWB  (see Condition
(1)). The work on PWB ¢ was later continued by Wiener [66-68], and in our setting
concluded by Brelot [11] in 1939. The notion of barrier goes further back in time; it
can be found in the work of Poincaré [53] from 1890. The implication (3) = (1) is due
to Bouligand [10] who generalized a result of Lebesgue [43]. The equivalence with
assertion (5) originates from the study of function algebras known as Choquet theory,
which was developed in the 50’s and 60’s by Bauer, Bishop, Choquet, de Leeuw, and
others (see e.g., [25,28,29] and the references therein). For a beautiful treatise on
Choquet theory we highly recommend [48].

Inspired by the beauty of the equivalences in Theorem A, analysts started to inves-
tigate these notions within the model introduced by Lelong [44] and Oka [50] in 1942,
where subharmonic functions are changed to plurisubharmonic functions. The unit
polydisc in C", n > 2, shows that the notions of weak and strong barrier for plurisub-
harmonic functions are not equivalent. Instead, we have Theorems B and C below,
where we assume that n > 2. If n = 1, then the two theorems become Theorem A
since subharmonic functions are then the same as plurisubharmonic functions.

Theorem B Assume that Q is a bounded domain in C", n > 2. Then the following
assertions are equivalent.

(1) 0K is B-regular at every boundary point zg € 92, in the sense that

Zlgrrgo PB(2) = f(zo0),
zeQ

for each continuous function f : 92 — R. Here

PB#(z) = sup {U(Z) cv e PSH(Q), Cli_mgv(f) < fé), Vée 39}-
e

Here PSH(S2) is the space of plurisubharmonic functions defined on ;

(2) 0% has a strong barrier at every point that is plurisubharmonic;

(3) 2 admits an exhaustion function ¢ that is negative, smooth, plurisubharmonic,
and such that (¢(z) — |z|?) is plurisubharmonic.

(4) 0€2 is equal to the Jensen boundary w.r.t. the Jensen measures generated by the
cone of functions that are continuous on 2, and plurisubharmonic on .
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In 1959, Bremermann [13] adopted the idea from assertion (1) in Theorem A to
pluripotential theory (see (1) in Theorem B). He named his construction the Perron—
Carathéodory function after the articles [15,54]. The name did not survive the passage
of time, and now it is known as the Perron—Bremermann envelope. Drawing inspira-
tion from Choquet theory, and its representing measures [28,29,56], Sibony proved
Theorem B in the article [58], which was published in 1987. There he also put these
conditions in connection with Catlin’s property (P), and the 3-Neumann problem.
The last condition in assertion (3) means that we have that

n az(p

» —aja > |a*, foralla € C".
. a j3Zk
J-k=1

Hence, one can interpret ¢ as being uniformly strictly plurisubharmonic.

Theorem C Assume that 2 is a bounded domain in C"*, n > 2. Then the following
assertions are equivalent.

(1) 2 is hyperconvex in the sense that it admits an exhaustion function that is negative
and plurisubharmonic;

(2) 02 has a weak barrier at every point that is plurisubharmonic;

(3) 2 admits an exhaustion function that is negative, smooth and strictly plurisubhar-
monic;

(4) For every z € 0€2, and every Jensen measure i, which is generated by the cone
of functions that are continuous on S_Z, and plurisubharmonic on €2, we have that
w is carried by 92.

Historically, the notion of hyperconvexity was introduced by Stehlé in 1974 in connec-
tion with the Serre conjecture, and later in 1981 Kerzman and Rosay [39] proved the
equivalence of the three first assertions (see also [6]). Kerzman and Rosay also stud-
ied which pseudoconvex domains are hyperconvex. We shall not address this question
here (see e.g., the introduction of [5] for an up-to-date account of this question). Car-
lehed et al. [17] showed in 1999 the equivalence between (1) and (4). In connection
with Theorems B and C, we would like to mention the inspiring article [8] written by
Btocki, the first part of which is a self-contained survey on plurisubharmonic barriers
and exhaustion functions in complex domains.

As we mentioned at the beginning of this exposé, the purpose of this paper is to
study the geometry of the corresponding notions B-regular and hyperconvex domains
within the Caffarelli-Nirenberg—Spruck model. More precisely, in Theorem 4.3, we
prove what degenerates into Theorem B when m = n, and in Theorem 4.1, we prove
what is Theorem C in the case m = n, except for the corresponding implication
(1) = (3). This we prove in Sect. 5 due to the different techniques used, and the
length of that proof. In the case when m = 1, our Theorems 4.3 and 4.1 (together with
Theorem 5.4) merge into Theorem A above with N = 2n.

This article is organized as follows. In Sect. 2, we shall state the necessary def-
initions and some preliminaries needed for this paper, and then in Sect. 3, we shall
prove some basic facts about m-hyperconvex domains (Theorem 3.5). From Sect. 3,
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and Theorem 3.5 we would like to emphasize property (3). Up until now authors have
defined m-hyperconvex domains to be bounded domains that admit an exhaustion
function that is negative, continuous, and m-subharmonic. We prove that the assump-
tion of continuity is superfluous. This result is also the starting point of the proof
of Theorem 5.4. In Sect. 4, we prove Theorems 4.3 and 4.1, as mentioned above,
which correspond to Theorems B and C, respectively. We end this paper by show-
ing that every m-hyperconvex domain admits a smooth and strictly m-subharmonic
exhaustion function (Theorem 5.4; see implication (1) = (3) in Theorem C).

We end this introduction by highlighting an opportunity for future studies related to
this paper. As convex analysis and pluripotential theory lives in symbiosis, Trudinger
and Wang [60] draw their inspiration from the work of Caffarelli et al., and in 1999
they presented a model that makes it possible to study the transition between convex
analysis and potential theory. For further information see e.g., [59-61,65]. As [63]
indicates, further studies of the geometric properties of what could be named k-convex
domains are of interest. We leave these questions to others.

We want to thank Urban Cegrell, Per-Hakan Lundow, and Héakan Persson for
inspiring discussions related to this paper. We are also grateful for the comments
and suggestions given by the anonymous referee that helped with the presentation of
the final version of this paper.

2 Preliminaries

In this section, we shall present the necessary definitions and fundamental facts needed
for the rest of this paper. For further information related to potential theory see e.g., [4,
24,41], and for more information about pluripotential theory see e.g., [22,40]. We also
want to mention the highly acclaimed book written by Hérmander called “Notions of
convexity” [36]. Abdullaev and Sadullaev [3] have written an article that can be used
as an introduction to the Caffarelli-Nirenberg—Spruck model. We recommend also
Lu’s doctoral thesis [46]. We would like to point out that m-subharmonic functions in
the sense of Caffarelli et al. is not equivalent of being subharmonic on m-dimensional
hyperplanes in C" studies by others (see e.g., [1,2]). For other models in connection
to plurisubharmonicity see e.g., [31-33].

Let & C C" be a bounded domain, 1 < m < n, and define C; 1) to be the set of
(1, 1)-forms with constant coefficients. With this notation we define

sz{aE(C(Ll)ZOl/\ﬁnil ZO,...,am/\ﬂnimZO},

where B = dd¢|z|? is the canonical Kihler form in C”.
Definition 2.1 Assume that 2 C C” is a bounded domain, and let « be a subharmonic

function defined in 2. Then we say that u is m-subharmonic, 1| < m < n, if the
following inequality holds

ddu nay A ANa—1 ABTH >0,
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in the sense of currents for all «y, ..., a—1 € I'y,. With SH,,(2) we denote the set
of all m-subharmonic functions defined on 2. We say that a function u is strictly m-
subharmonic if it is m-subharmonic on €2, and for every p € 2 there exists a constant
¢p > Osuch thatu(z) —cp |z|% is m-subharmonic in a neighborhood of p.

Remark From Definition 2.1 it follows that
PSH=S8H,C---C SH; = SH.

In Theorem 2.2, we give a list of well-known properties that m-subharmonic func-
tions enjoy.

Theorem 2.2 Assume that Q@ C C" is a bounded domain, and 1 < m < n. Then we
have that

(1) Ifu,v e SH;, (), then su + tv € SH,, (), for constants s, t > 0;

2) Ifu,v € SH,, (), then max{u, v} € SH;,(2);

(3) If{ugy} is a locally uniformly bounded family of functions from SH,, (2), then the
upper semicontinuous regularization

*
(sue)
o

defines a m-subharmonic function;

4) If {u;} is a sequence of functions in SH,,(2) such that u;  u and there is a
point 7 € Q such that u(z) > —oo, then u € SH,,, (2);

(5) Ifu e SH(R2) and y : R — R is a convex and nondecreasing function, then
you € SHpu (),

(6) Ifu € SH, (), then the standard regularization given by the convolution u * p,
is m-subharmonic in {z € Q : dist(z, 9R2) > &}. Here we have that

_ 4
Pe =€ an (‘) )
&

p : Ry — Ry is a smooth function such that p(z) = p(|z|) and

(1) = # exp (ﬁ) whent € [0, 1]
0 whent € (1, 00),

where C is a constant such that f([:" o(Iz1Hp" = 1;

(7 Ifo € Q u € SHu(Q), v e SHy(w), andlim,_, v(z) < u(w) forallw € dw,
then the function defined by

max{u, v}, on w,

_ {u, on Q\ o,

is m-subharmonic on S2;
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3202 P. Ahag et al.

We shall need several different envelope constructions. We have gathered their
definitions and notations in Definition 2.3.

Definition 2.3 Assume that Q C C” is a bounded domain, and 1 < m < n.
(a) For f € C(Q) we define

Sf(z) =sup{v(z) : v € SHu(Q),v = [},
and similarly
S5 (2) =sup {v(z) : v € SHH(R) NC(Q), v < f}.
(b) If instead f € C(3S2), then we let
Sf(z) =sup {v(2) : v € SHW(Q), v* < f on IQ},
and
%(2) =sup {v(z) 1 v € SHH(R) NC(Q), v < f on IQ}.

Remark Assume thatm = 1. If @ ¢ C" (X R?) isa regular domain in the sense of
Theorem A, and if f € C(3€2), then PWB ¢ (defined also in Theorem A) is the unique
harmonic function on €2, continuous on €2, such that PWB r = f on 3. Therefore,
we have that S¢(z) = Spwg, (2), and S;c (z) = Sf)WBf (2).

In Definition 2.4, we state the definition of relative extremal functions in our setting.

Definition 2.4 Assume that E € Q is an open subset such that Q \ E is a regular
domain in the sense of Theorem A. Then we make the following definitions

Sg(z) =sup{v(z) :v e SHu(R),v < —1 on E,v <0},
and
S (2) = sup{v(z) W ESHL(QNCQ),v<—1onE,v< 0}.

Remark From well-known potential theory, we have that if 4 g is the unique harmonic
function defined on Q \ E, continuouson Q \ E, hg = 0on 9, hg = —1 on dE,
and if we set

hp(z) ifzeQ\E

H =
() {—1 ifz e E,

then we have that Sg(z) = SH, (2). To see it assume that v € SH,, (), v < —1 on
E,v <0,thenv < hg on 2\ E and therefore v < Hg, which means that Sg < Sq,..
On the other hand since Si"{E € SH,;,(2) and SEE < —1 on E which implies that

* *
SHE =< SE = SHE =< SHE'
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Blocki’s generalization of Walsh’s celebrated Theorem [62], and an immediate
consequence will be needed as well.

Theorem 2.5 Let Q2 be a bounded domain in C"*, and let f € C(_Q). Ifforallw € 92
we have that lim; ., S r(2) = f(w), then Sy € SH,, () NC().

Proof See Proposition 3.2 in [9]. O
A direct consequence of Theorem 2.5 is the following.

Corollary 2.6 Let Q be a bounded domain in C", and let f € C(S). Ifforallw € 92
we have that lim;_, SCf(z) = f(w), then 8¢ =Sy € SH,,(Q2) NC(RQ).

Proof First note that
S <Sfg= 1
Therefore, if
lim 8% (2) = f(w),
Z—w
holds for all w € 0€2, then

lim () = f(w).

Hence, by Theorem 2.5, we get that Sy € SH,,(2) N C(€2), which gives us that
Sf < S?.Thus, Sf ZS;C. O

In Sect. 4, we shall make use of techniques from Choquet theory, in particular Jensen
measures w.r.t. the cone SH,,(2) N C(RQ) of continuous functions. This is possible
since SH,, (£2) N C(R) contains the constant functions and separates points in C(£2).
Our inspiration can be traced back to the works mentioned in the introduction, but
maybe more to [17] and [35].

Definition 2.7 Let Q2 be a bounded domain in C", and let u be a non-negative regular
Borel measure defined on 2. We say that p is a Jensen measure with barycenter
70 € Qwrt. SH,;, () NC(RQ) if

u(zg) < /_ udp forall u € SH,, () NC(Q).
Q

The set of such measures will be denoted by j;g Furthermore, the Jensen boundary
W.LL. \72’(’)‘ is defined as

dgm ={zeQ:T" ={8}}.

Remark The Jensen boundary is another name for the Choquet boundary w.r.t. a given
class of Jensen measures. For further information see e.g., [12,48].
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Remark There are many different spaces of Jensen measures introduced throughout
the literature. Caution is advised.

The most important tool in working with Jensen measures is the Edwards’ duality
theorem that origins from [25]. We only need a special case formulated in Theorem 2.8.
For a proof, and a discussion, of Edwards’ theorem see [69] (see also [20,21,55]).

Theorem 2.8 (Edwards’ Theorem). Let §2 be a bounded domain in C", and let g be
a real-valued lower semicontinuous function defined on Q2. Then for every 7 € Q we
have that

Sg(z) =sup{v(z) : v € SH,H(Q) NC(Q), v < g} =inf {/gdu T E sz} .

We end this section with a convergence result.

Theorem 2.9 Assume that Q is a domain in C", and let {z,} C Q be a sequence of
points converging to z € 2. Furthermore, for each n, let w, € J."'. Then there exists
a subsequence {jin; }, and a measure p € J" such that {jin; } converges in the weak-*

topology to .

Proof The Banach-Alaoglu theorem says that the space of probability measures
defined on €2 is compact when equipped with the weak-* topology. This means that
there is a subsequence {u,;} that converges to a probability measure . It remains to

show that o € J/". Take u € SH,, () N C(Q) then
/ud,u = lim/udunj > limu(z;) = u(z),
J J
hence n € J". O

3 Basic Properties of m-Hyperconvex Domains

The aim of this section is to introduce m-hyperconvex domains (Definition 3.1) within
the Caffarelli-Nirenberg—Spruck model, and prove Theorem 3.5 . If m = 1, then the
notion will be the same as regular domains (see assertion (4) in Theorem A in the
introduction), and if m = n then it is the same as hyperconvex domains (see (1) in
Theorem C).

Definition 3.1 Let 2 be a bounded domain in C". We say that Q is m-hyperconvex if
it admits an exhaustion function that is negative and m-subharmonic.

Traditionally, in pluripotential theory, the exhaustion functions are assumed to be
bounded. That assumption is obviously superfluous in Definition 3.1. Even though it
should be mentioned once again that up until now authors have defined m-hyperconvex
domains to be bounded domains that admit an exhaustion function that is negative,
continuous, and m-subharmonic. We prove below in Theorem 3.5 that the assumption
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of continuity is not necessary. Before continuing with Theorem 3.5 let us demon-
strate the concept of m-hyperconvexity in the following two examples. Example 3.2
demonstrates that Hartogs’ triangle is 1-hyperconvex, but not 2-hyperconvex.

Example 3.2 Set
Q={zweC?: |z < |w| <1}
This is Hartogs’ triangle, and it is not hyperconvex (Proposition 1 in [26]), but it is a

regular domain. In other words, it is not 2-hyperconvex, but it is 1-hyperconvex. It is
easy to see that

¢(z, w) = max { log wl, |z|* — |w[*}

is a negative, subharmonic (1-subharmonic) exhaustion function for 2. O

In Example 3.3, we construct a domain in C? that is 2-hyperconvex, but not 3-
hyperconvex.

Example 3.3 For a given integer 1 < k < n, let ¢} be the function defined on C" by
2 2 n 2
ez = [P+ P (1= 2 Ll

Then we have that ¢ is m-subharmonic function if, and only if, m < k. Let us now
consider the following domain:

QU={Gn .z eC il < 1 fzal < Lgk(2) < 1}
This construction yields that €2; is a balanced Reinhardt domain that is not pseu-

doconvex (see e.g., Theorem 1.11.13 in [38]). Furthermore, we have that €2 is
k-hyperconvex, since

u(zi, ... zo) =max{lzil, ..., |zal, @r(2)} — 1

is a k-subharmonic exhaustion function. In particular, we get that forn = 3,and k = 2,
the domain Q,  C3 is 2-hyperconvex but not 3-hyperconvex. O

We shall need the following elementary lemma. For completeness we include a
proof.

Lemma 3.4 Let x : (—00,0) — (0, 00) be an increasing and convex function. Then
foranya < b < 0and x < 0 we have that

x(b+x)—x(@+x) < xb) - x(.
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Proof For x < 0, let us define

b+x
0(x) = / X, (1) dt,

+x

where x, denotes the right derivative of x (which exists since x is convex). By our
assumptions, we know that x/ is a non-negative and nondecreasing function. There-
fore, 6 is also nondecreasing, and then for any x < 0 we have that

x(b+x)—x(@a+x)=0(x) <000) = x(b) — x(a).

]
The aim of this section is to prove the following theorem, especially property (3).

Theorem 3.5 Assume that 2, 21, and Q2 are bounded m-hyperconvex domains in
C", n>2,1<m <n. Then we have the following.

(1) If 21 N Qy is connected, then the domain 21 N Q2 is m-hyperconvex in C".

(2) The domain Q1 x 0 is m-hyperconvex in C*".

(3) The domain 2 admits a negative exhaustion function that is strictly m-
subharmonic on , and continuous on Q.

(4) IfQQisapriorionly a bounded domain in C" such that for every z € 9S2 there exists
a neighborhood U such that Q N\ U is m-hyperconvex, then 2 is m-hyperconvex.

Proof Part (1) For each j = 1, 2, assume that ¥/; € SH,,(S2;) is a negative exhaus-
tion function for the m-hyperconvex domain Q;, j = 1,2. Then max{yr, ¥} €
SH,n (21 N Ry) is a negative exhaustion function for 21 N ;. Thus, 21 N Q7 is
m-hyperconvex in C".

Part (2) This part is concluded by defining a negative exhaustion function by

¥ (z1, 22) = max{y1(z1), Y2(22)} € SHu(Q1 x 22).
Part (3) The proof of this part is inspired by [19]. First, we shall prove that there
exists a negative and continuous exhaustion function. We know that 2 always admits
a bounded, negative, exhaustion function ¢ € SH,,(R2). Fix w € Q and r > 0 such
that B(w, r) € L2, and note that there exists a constant M > 0 such that
M(p < HB(w,r)

(the definition of Hp(y - is in the remark after Definition 2.4). This construction
implies that

0= lim Mg(z) < lim Smy,, (z) < lim Hpg, () = 0.
7z—0Q2 77— 02 ! 77— 02

Thanks to the generalized Walsh theorem (Theorem 2.5) we have that

SHB(w,r) = SB(w,r) e SHL(2)N C(Q),
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and that Sp(y, ) is a continuous exhaustion function.

Next, we shall construct a continuous strictly m-subharmonic exhaustion function
for Q2. From the first part of this theorem, we know that there is a negative and con-
tinuous exhaustion function u € SH,, (2) N C(R) for . Choose M > 0 such that
|z|2 — M < —1 on £, and define

fuon 5}
Vj(z) = max qu(z), —— ¢ -

Then ¥; € SHu () NC(Q), ¥jlan = 0, and ¥; < 0 on Q. If we now let

| I 3
. Coad =Y ay;,
DY max{sup(—;), 1} ; Y

then Y = Zlle a;y; defines a decreasing sequence of continuous m-subharmonic
functions on defined 2. We can conclude that v € SH,, (), since ¥ (z) > —oo for
z € Q. The continuity of ¥ is obtained by the Weierstrass M-test. To see that v is
strictly m-subharmonic, note that if € €2, then there exists an index j,, such that on
o we have that

2> =M .
Yi=——" forall j > j,.
J

This gives us that

- = kP-M
V= Zaj}[fj + Z aj———.
=1 =t J
Since LM is strictly plurisubharmonic, and therefore strictly m-subharmonic, we
have that i is strictly m-subharmonic on 2. Finally, i is an exhaustion function for
€2, since ¥ |y = O for all j.
Part (4) The idea of the proof of this part is from [7]. By the assumption there are
neighborhoods U, ..., U, such that 02 C U?]:l U;;, and each U, N Q is m-
hyperconvex. Let u; : & — [—1, 0] be a negative and continuous m-subharmonic
exhaustion function for U;; N Q. Let V; € U;; be such that 3Q C Uj»v:l V;. For
x < 0, we then define the following continuous functions

Bx)=max{u;(z):z€ V;NQ, j=1,...,N,dist(z, 9Q) < —x},
a(x) = min{uj(z) 1z € ‘_/j N, j=1,...,N,dist(z, 0Q) < —x}.
From these definitions, it follows that « < B, and lim,_,¢- «(x) = 0. There-

fore, there exists a convex, increasing function xy : (—oo,0) — (0, 00) such that
lim,_,og- x(x) =o00,and x o B < x o + 1 (see e.g., Lemma A2.4. in [7]). Hence,
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[xouj—your <1lonV;NV,NQ.
For any ¢ > 0 we have that
Ix(uji)—e)— xur(x) —e) <1forzeV,NV,NQ, 3.D

since x is an increasing and convex function (see Lemma 3.4). Next, let ij e Vi,

j = 1,..., N, be such that Q \V C U;-V:l ij, for some open set V &€ . For
each j, take a smooth function ¢; such that supp(¢;) C V;, 0 < ¢; < 1, and

@; = 1 on a neighborhood of ‘7]{ . Furthermore, there are constants M, M» > 0
such that |z|2 — My < 0 on 2, and such that the functions ¢; + M2(|z|2 — M) are
m-subharmonic for j = 1, ..., N. Let us define

v.e(@) = x ;@) — &)+ ¢j (@) — 1+ Ma(|z]* — My).
From (3.1) it then follows that
Vje < Ve onaneighborhood of dV; N Vk/ nNQ. 3.2)
Take yet another constant ¢ such that
sup{uj(x):zevVnV;,j=1...,N} <c<0, (3.3)
and define
ve(@) = max {00 (2), x(©) = 1+ Ma(lz> = M) |

By (3.2), and (3.3), it follows that v, is a well-defined m-subharmonic function defined
on 2. Finally note that, for ¢ < —e, the following function

Ve (2) 1

Iﬁe(Z) = X(_E)

is m-subharmonic, and ¥, < 0on Q2. Forz € 0Q N V]f, we have that

uj(z) =0 and  @;(z) =1,

hence
. _ 2 _
%(Z)ZL(Z)_IZX( &) + M>(|z] Ml)—lz—Mle. 3.4)
x(=¢) x (=€) x(=¢)
In addition, it holds that
wg(z)<M—1,zeV\Cij. (3.5)
- x(=9)

j=1
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Now fix aball B(z,r) € V \ U;V=1 V. From (3.4), (3.5), and the fact that
lim yx(x) =00
x—0—
we have that
(sup ¥e)* < Sp(z.r)
&
(see Definition 2.4). Thus,
li =0.
5_13519 SB(z,r) &)=0

Theorem 2.5 (generalized Walsh’s theorem) gives us that
Sp.r) € SHw () NC(Q),

and that Sp(; , is the desired exhaustion function for 2. This ends the proof of Part
(4), and this theorem. O

Remark Assume that €2 is bounded m-hyperconvex domain, and E' € €2 is an open
subset such that 2 \ E is a regular domain in the sense of Theorem A. Then we have
that

(1) S%(z) = S, (2), and
(2) Sp =85 =S§i, = Su,.

To see that (1) holds, first note that it is clear that 8% (z) < Sf{E (2). On the other hand,
since €2 is a m-hyperconvex domain it can be proved as in part (3) of Theorem 3.5
that SiIE € SH;u(2) NC(R). Therefore, S (z) > Sf{E (z). Property (2) follows from
Theorem 2.5 together with the remark after Definition 2.4.

4 The Geometry of m-Regular Domains

In this section, we shall investigate the geometry of the corresponding notions of
B-regular and hyperconvex domains within the Caffarelli-Nirenberg—Spruck model.
More precisely, in Theorem 4.3, we prove what degenerates into Theorem B when
m = n, and in Theorem 4.1, we prove what is Theorem C in the case m = n.

Theorem 4.1 Assume that Q is a bounded domain in C", n > 2, 1 < m < n. Then
the following assertions are equivalent.

(1) 2 is m-hyperconvex in the sense of Definition 3.1;

(2) 02 has a weak barrier at every point that is m-subharmonic;

(3) Q admits an exhaustion function that is negative, smooth and strictly m-
subharmonic; and

(4) Forevery z € 02, and every u € J*, we have that supp(u) C 9€2.
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Proof The implications (1) = (2), and (3) = (1) are trivial. The implication (1) =
(3) is postponed to Theorem 5.4 in Sect. 5.

2) = (1) : Let w € 2 and r > 0 be such that the ball B(w, r) € 2. Then by
assumption, we have that for every z € 92 there exists a weak barrier u, at z that is
m-subharmonic. Since there exists a constant M, > 0 such that

Myu; < Spw.rn
it follows that

glggg SB(w,r) (&) =0.

Thanks to the generalized Walsh theorem (Theorem 2.5), we know that Sp(, ) €
SH,, () NC(RQ). Hence, SB(w,r) is an exhaustion function for 2.

(1) = (4) : Assume that € is m-hyperconvex, and that u € SH,, (€2) N C(Q) is an
exhaustion function for Q. If z € 92, and u € J)", then

O:u(z)f/udufo.

This implies that supp(u) C 9€2, since u < 0 on .
(4) = (1) : Suppose that supp(u) C dQ forall u € J", z € 9Q. Letw € ,
r > 0, be such that the ball B(w, r) € €2, and let

St @ = sup(e(2) 1 ¢ € SH () NC(R). ¢ <0.¢ < —1on B(w.r)}.

From Edwards’ theorem (Theorem 2.8), it follows that

8¢ o5(2) = inf {/ ~XBlwn AR E sz} = —sup [M(B(w, M) eE jz’”} :
We shall now prove that

S8 =0,

£ lrng B(w r)

and this shall be done with a proof by contradiction. Assume the contrary, i.e., that
there is a point z € 92 such that

lim S (5) < 0.

§—>
Then we can find a sequence {z,}, that converges to z, and

C
m(zn) < —¢ for every n.
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We can find corresponding measures j, € \71’7 such that u, (B(w, r)) > ¢. By passing
to a subsequence, Theorem 2.9 gives us that we can assume that w,, converges in the
weak-* topology to a measure . € J.". Lemma 2.3 in [17], implies then that

w(Bw,r)) = / Xy dn > n@/xmdun = lim p,(B(w.r)) > & > 0.

This contradicts the assumption that .« € J;" only has support on the boundary. Hence,
Corollary 2.6 gives us that

Bw.r) € SHn(Q) NC(Q),
and that S%(w »y 18 an exhaustion function for 2. Thus, €2 is m-hyperconvex. O

Before we can start with the proof of Theorem 4.3, we need the following corollary.

Corollary 4.2 Let Q be a bounded m-hyperconvex domain in C", and let f € C(9%2).
Then there exists a function u € SHp, (2) NC() such that u = f on 3 if, and only

if,
f(z)zinf{/fdu:uej;"} forall z € 9R2.

Proof Assume that f € C(dS), and that u € SH,, () N C(R) is such that u = f on
0Q. Let z € 92, and v € J!", then we have that

r@=ue = [udn,
which, together with Theorem 4.1, imply that
f(z)finf{/udu:uejzm}=inf{ffd,u:,u€]!”}.
Since §; € J" we have that
inf{/fd,u:uejzm} S/fd&zf(z).
Hence,
f(z)=inf{/uduzue£"} for z € 9Q2.

Conversely, extend f to a continuous function on  (for instance one can take PWB 1
which was defined in Theorem A in the introduction) and for simplicity denote it also
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by f. Since Q is a m-hyperconvex domain then by Theorem 4.1 for any z € 92 and
any 1 € J" it holds that supp(u) € 9€2, so we have

f(z):inf{/fdu:,u,ejzm} forall z € 9Q2.

Edwards’ theorem (Theorem 2.8) gives us now that

?«(Z):inf{/fdu:uejzm},

and therefore S‘} = f on 9L2. To conclude this proof, we shall prove that for z € 92
it holds that

lim S5 (&) = .
lim 856 = /(2
We shall argue by contradiction. Assume that

li_mSCf(E) < f (2 for some z € 0L2.

§—z

Then we can find an ¢ > 0, and a sequence §; — z such that

$ (&) < f(m)—e  forevery j.

Since, for every j, we have that
Core N . m
s =i { [ raus ey
there are measures (; € \75’7 such that

[ ran <@ -e.

By passing to a subsequence, and using Theorem 2.9, we can assume that  ; converges
in the weak-* topology to some u € J". Hence,

[ rau=iin [ ran; < s -e.
This contradicts the assumption that
f(z):inf{/fdu:uejz’"} .
Therefore, by Corollary 2.6, S; € SH,u(R2) NC(K), and the proof is finished. O
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Remark 1If Q is a bounded domain that is not necessarily m-hyperconvex, then we
have a similar result as in Corollary 4.2 namely that there exists a function u €
SH,u(R2) N C(Q) such that u = f on Q if, and only if, there exists a continuous
extension ¢ of f to Q such that

<,0(Z)=inf{/(pdu:u6jz’"}.

We end this section by proving Theorem 4.3, and its immediate consequence. We
have decided to deviate in Theorem 4.3 the notation from Definition 2.3. This to
simplify the comparison with Theorem B in the introduction.

Theorem 4.3 Assume that Q2 is a bounded domain in C", n > 2, 1 < m < n. Then
the following assertions are equivalent.
(1) 0K2is By, -regular at every boundary point zo € 0S2, in the sense that

. o
Aim PB (2) = f(z0),

zeQ

for each continuous function f : 9Q2 — R. Here

PB'}(z) = sup {v(z) (v e SHu(Q), é}@gv(f) < f§), v&e 89}-
7eQ

(2) 0K has a strong barrier at every point that is m-subharmonic;
(3) 2 admits an exhaustion function ¢ that is negative, smooth, m-subharmonic, and
such that

(¢@) — 121?) € SHu(@) s and

“4) 0Q = 8\75” in the sense of Definition 2.7.

Proof (1) = (2) : Fix z € 092, and let f be a continuous function on 92 such that
f(z) =0and f(§) <0 for & # z. Then PB’;? is a strong barrier at z.

(2) = (1) : Let f € C(3R2). Then the upper semicontinuous regularization (PB’/?.)*
is m-subharmonic, and by the generalized Walsh theorem (Theorem 2.5) it is sufficient

to show that

lim PB" =
PRy =1

to obtain that PB’}’ € SHu(Q2) NC(Q). Fix w € 3, and & > 0. Let uy, € SH,, (Q)
be a strong barrier at w that is m-subharmonic. Then there exists a constant M > 0

such that

fw) +Muy, —e < f,  ondQ,
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and therefore we have that f(w) + Mu,, — ¢ < PB’;. This gives us that

lim PB”(§) > f(w) — .
E—w
and finally limg PB’}’} &) = f(w).

(1) = (4) : Fix z € 9Q. Let f be a continuous function on 9€2 such that f(z) =0
and f(§) < Ofor & # z. Then PB']'! € SH;u () NC(), and PB” = f on 9Q2. Let

w € J)" then, since u is a probability measure on Q, we have that
PB%(z) < | PB% du < | max PB} du =PB%(2).
1@ = / o= (Supp(/t) f)/ a 1@

Thus, u = §;.

(4) = (1) : This follows from Corollary 4.2.

(1) = (3) : Take f(z) = —2|z|* on 9K and set u(z) = PB" (2) + |z|%>. By Rich-
berg’s approximation theorem, we can find a smooth function v that is m-subharmonic
and

51_1)1519 (u(€) —v(§)) =0.

This implication is then concluded by letting ¢(z) = v(z) + |z|2. Some comments
on Richberg’s approximation theorem are in order. In our case, Demailly’s proof of
Theorem 5.21 in [22] is valid. Richberg’s approximation theorem is valid in a much
more abstract setting (see e.g., [33,52]).

(3) = (1) : Let f € C(0L2), and let & > 0. Then there exists a smooth function g
defined on a neighborhood of Q such that

f<g=f+e on 0%2.

By assumption there exists a constant M > 0 such that g + Mg € SH,,(2). Then
we have that

g+Mp—¢e<f, on Q2.
Hence, g+ Mg — ¢ < PB’;? in Q2. This means that

li_mPBf;’(S)Zg(w)—szf(w)—s for all w € €2,

E—>w

and therefore we get
lim PB’}’ &) = f(w).
E—>w ‘
Thus, PB’J'C1 € SHu () NC(R), by the generalized Walsh theorem (Theorem 2.5). O
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An immediate consequence of Theorem 4.3 is the following corollary.

Corollary 4.4 Let Q2 be a bounded domain in C* such that for every z € 02 there
exists a neighborhood U such that Q2 N U, is By,-regular, then Q2 is B, -regular.

Proof Let z € 92, U, be a neighborhood of z, and let u, be a strong barrier at z, that
is m-subharmonic, and defined in some neighborhood of UZ N Q. Now let § > 0, be
such that u; < —§ on U, N Q. Then we can define a (global) strong barrier at z, that
is m-subharmonic:

0 (w) = max{u,(w), =8} ifw e U,NQ,
ER ifweQ\U,.

5 The Existence of Smooth Exhaustion Functions

The purpose of this section is to prove the implication (1) = (3) in Theorem 4.1.
That we shall do in Theorem 5.4. This section is based on the work of Cegrell [19],
and therefore shall need a few additional preliminaries.

Definition 5.1 Assume that 2 is a bounded domain in C", and let u € SH,,(2) N
L°°(R2). Then the m-Hessian measure of u is defined by

Hy (u) = (dd“w)™ A "™,

where 8 = dd®|z|?.

Remark The m-Hessian measure is well-defined for much more general functions
than needed in this section. For further information see e.g., [9].

For a bounded m-hyperconvex domain in C", we shall use the following notation

£(Q) = {weSHmmmL“’(Q): ¢ <0, lirgﬂw(z)=0,/ Hun(¢) <oo}.
7= Q

In Theorem 5.4, we shall prove that a m-hyperconvex domain admits an exhaustion
function that is smooth, and strictly m-subharmonic. Our method is that of approxima-
tion. Therefore, we first need to prove a suitable approximation theorem. Theorem 5.2
was first proved in the case m = n by Cegrell [19]. If the approximating sequence {v;}
is assumed to be only continuous on €2, then the corresponding result was proved by
Cegrell [18, Theorem 2.1] in the case m = n, and Lu [46, Theorem 1.7.1] for general
m. In connection with Theorem 5.2, we would like to make a remark on Theorem 6.1
in arecent paper by Harvey et al. [34]. There they prove a similar approximation theo-
rem, but there is an essential difference. They assume that the underlying space should
admit a negative exhaustion function that is C2-smooth, and strictly 7-subharmonic.
Thereafter, they prove that approximation is possible. Whereas we prove that smooth
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approximation is always possible on an m-hyperconvex domain, i.e., there should
only exist a negative exhaustion function. Thereafter, we prove the existence of a neg-
ative and smooth exhaustion function that is strictly m-subharmonic, and has bounded
m-Hessian measure. We believe that Theorem 5.2 is of interest in its own right.

Theorem 5.2 Assume that Q2 is a bounded m-hyperconvex domain in C". Then, for any
negative m-subharmonic function u defined on 2, there exists a decreasing sequence
(v} C 5,(,),(9) NC™ () such that ¥j — u, as j — oo.

Before proving Theorem 5.2, we need the following lemma. The proof is as in [19],
and therefore it is omitted.

Lemma 5.3 Let u, v be smooth m-subharmonic functions in Q2 and let @ be a neigh-
borhood of the set {u = v}. Then there exists a smooth m-subharmonic function ¢
such that ¢ > max{u, v} on Q and ¢ = max{u, v} on Q \ w.

Now to the proof of Theorem 5.2.

Proof of Theorem 5.2 By Theorem 3.5, property (3), we can always find a continuous
and negative exhaustion function « for €2 that is strictly m-subharmonic.

We want to prove that for any u € 52, (Q) N C(Q) with supp(H,, (1)) € £, and for
any a € (1, 2), there exists ¢ € 5,9,(&2) N C*(2) such that

au <Y < u. 5.1

We shall do it in several steps.
Step 1. Fix a constant s < 0 such that

supp(H;, (1)) € Qo ={z € Q: a(z) < s},

andletl < b < a < 2andc < Obe constants such thatau < bu+c inaneighborhood
of 2. Note that we have

Qo C {au < ¢} C {2u < c}.

By using standard regularization by convolution (Theorem 2.2 (6)), we can construct
a sequence (/)} of smooth m-subharmonic functions decreasing to bu. Out of this
sequence pick one functio_n, go(’), that is smooth in a neighborhood of the set {2u < c},
and such that g06 < u on €2¢. Next, define

max{2u, gy +c} on{2u < c},

=1, on {2u > c}.

Then by gonstruction, we have that ¢g € 8,91 (£) NC(R). Furthermore, on a neighbor-
hood of 29 we have ¢g = (p6 + ¢, since

2u <au <bu+c<g)+ec.
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With the definition
@0 = sup{v € SH;u(R) : v < ¢ on o, v < 0},

we get that g9 = S, where

L on €20,
“|lh on Q\ o,

is a continuous function. Here / is the unique harmonic function on 2 \ ¢ that is
continuous up to the boundary, 7 = ¢g on 929 and 7 = 0 on 9<2. In fact the function
h can be obtain as (see [4])

h(z) = sup {9(1) 10 € SH1(2)\ ), limsupb(z) < @o(¢), V¢ € 920 U asz} .
7—&

Thanks to the generalized Walsh theorem (Theorem 2.5), we have that gg € SH,, (€2)N
C(£2). Furthermore,

au <bu+c<gy+c=9o=@¢ <@, <u  on Q.

Thus, we see that

au < @y < u on 2.

The set {au < ¢o} C {2u < c} is compact, and therefore we have that ¢ is smooth
in a neighborhood of {au < ¢p}.
Step 2. Let €, be a given domain such that Qy € @ € Q. We shall construct
functions @1, ¢, and a domain 2 with the following properties;
(1) Q)€ Q) € Qand Q = {o < s1}, for some 51 < 0;
(2) ¢1.¢1 € Ep () NCE);
(3) @0 = 1 0n L2;
4) au < ¢1 < uon;
(5) @1 =¢10nQy;
(6) {au < @1} € Q; and
(7) ¢1 is smooth in a neighborhood of {au < ¢1}.

We start by taking 51 < 0 such that
Q) EQ ={a<s}EQ.

and g9 < au on 9€2;. This is possible since the set {au < ¢p} is compact. Let
1 < b <a,and ¢ < d < 0, with the properties that

au < bu +d < ¢y on a neighborhood of ;.
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Once again using standard approximation by convolutions, let d)}’ be a sequence of
smooth m-subharmonic functions decreasing to bu + d. Take one function from this
sequence, call it goi/ , such that it is smooth in a neighborhood of {2u < d}, and

goi/ < (ﬁo on Q 1.
The definition

, _ Jmax{g{,2u} on{2u <d},
17 on {2u > d}

yields that ¢| € 8,91(9) N C(), and we have that ¢} = ¢ near {au < ¢|}.
Take an open set W such that

{au < 9o = 9]} € W € {au < min(go, ¢})} \ 0,

therefore by Lemma 5.3 there exists ¢; € 8,91(9) such that ¢1 < u on 2, and with
@1 > max{go, ¢} } with equality on Q¢. Furthermore, ¢; is smooth on W and ¢ = ¢g
on 0. It also follows that ¢; is smooth near {au < ¢} which contains 21, since
@1 = ¢} if g9 < au < ¢;. Both functions ¢, and ¢{, are smooth near

{au < go} N {au < ¢}}.
Let us define
@1 = sup{v € SH,, () : v < ¢ on Qp,v <0},
then as in Step 1, it follows that ¢; € SH,, () N C(L). The constructions ¢1, ¢; and

2 satisfy all the Conditions (1)—(7).
Step 3. Now if 2; ' €2, then the function

¥ = lim ¢; € £2(Q).
j—o0

Furthermore, ¥ is smooth since for any domain w € 2 there exists j, such that on
the set w we have ¥/ = ¢;, € C®. This ends the proof of (5.1).

To finish the proof of this theorem, assume that u is a negative m-subharmonic
function defined on 2. Theorem 1.7.1 in [46] implies that there exists a decreasing
sequence {u;} C 6’3(9) NC(Q), supp(H,, (u)) € , such that u; — u, as j — oo.
Then by (5.1), there exists a sequence ¥/; € 8,91(9) N C*(2) with

1 1
<1_j+1)“"5‘/”'5<1_7>”’"

and the proof is finished. O
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We shall end this paper by proving the implication (1) = (3) in Theorem 4.1.
Theorem 5.4 Assume that Q is a m-hyperconvex domain in C", n > 2, 1 <

m < n. Then Q admits an exhaustion function that is negative, smooth, strictly m-
subharmonic, and has bounded m-Hessian measure.

Proof Theorem 5.2 implies that there exists a function ¥ € 5,(,)1 () NC®(RQ). Let
M > 0 be a constant such that

IzZ?—M < -1 ong,

and define

12> — M

¥ (z) = max {I//(z), f} e &) nc).

This construction also implies that v/; is smooth outside a neighborhood w of the set

2 _
{wz):u}.
J

Lemma 5.3 implies that there exists ¢; € 5,9[ (€2) NC*(L) such that ¢; = ¥r; outside
. Now we choose a sequence a; € (0, 1) such that the function

o0
v = aje;
=1

is smooth, strictly m-subharmonic, and belongs to 5,91 (2). It is sufficient to take
1

1
2/ max {ngo,noo,h;", 1}

aj = ,  where h; =/ Hy (¢)).
Q

Note here that |¢| < 1. The construction
n
tn = ajg;
Jj=1

implies that u, € 5,91 (2), and u, \{ ¢, as n — oo. Using standard arguments, and
finally by passing to the limit with n, we arrive at

m

00 1
H,, < ; H,, (¢ < 1.
/Q (¢) < ;a, ( /Q (w,)) <
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Let us conclude this proof by motivating why ¢ is necessarily smooth, and strictly
m-subharmonic. Let Q' € €, then there exists an index j, such that on Q" we have
that

2> — M .
(pjzf for j > j,.

This gives us that

Jo
@—Zajfﬂj-F Z ('Zl ) on .

J=Jwtl1
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