147 research outputs found

    Even Galois Representations and the Fontaine--Mazur conjecture II

    Full text link
    We prove, under mild hypotheses, that there are no irreducible two-dimensional_even_ Galois representations of \Gal(\Qbar/\Q) which are de Rham with distinct Hodge--Tate weights. This removes the "ordinary" hypothesis required in previous work of the author. We construct examples of irreducible two-dimensional residual representations that have no characteristic zero geometric (= de Rham) deformations.Comment: Updated to take into account suggestions of the referee; the main theorems remain unchange

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera

    Get PDF
    International audiencePrecession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 x 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 x 10(-4) with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region. (C) 2014 AIP Publishing LLC

    Reduced boron diffusion under interstitial injection in fluorine implanted silicon

    No full text
    Point defect injection studies are performed to investigate how fluorine implantation influences the diffusion of boron marker layers in both the vacancy-rich and interstitial-rich regions of the fluorine damage profile. A 185 keV, 2.3?1015 cm?2 F+ implant is made into silicon samples containing multiple boron marker layers and rapid thermal annealing is performed at 1000 °C for times of 15–120 s. The boron and fluorine profiles are characterized by secondary ion mass spectroscopy and the defect structures by transmission electron microscopy ?TEM?. Fluorine implanted samples surprisingly show less boron diffusion under interstitial injection than those under inert anneal. This effect is particularly noticeable for boron marker layers located in the interstitial-rich region of the fluorine damage profile and for short anneal times (15 s). TEM images show a band of dislocation loops around the range of the fluorine implant and the density of dislocation loops is lower under interstitial injection than under inert anneal. It is proposed that interstitial injection accelerates the evolution of interstitial defects into dislocation loops, thereby giving transient enhanced boron diffusion over a shorter period of time. The effect of the fluorine implant on boron diffusion is found to be the opposite for boron marker layers in the interstitial-rich and vacancy-rich regions of the fluorine damage profile. For marker layers in the interstitial-rich region of the fluorine damage profile, the boron diffusion coefficient decreases with anneal time, as is typically seen for transient enhanced diffusion. The boron diffusion under interstitial injection is enhanced by the fluorine implant at short anneal times but suppressed at longer anneal times. It is proposed that this behavior is due to trapping of interstitials at the dislocation loops introduced by the fluorine implant. For boron marker layers in the vacancy-rich region of the fluorine damage profile, suppression of boron diffusion is seen for short anneals and then increased diffusion after a critical time, which is longer for inert anneal than interstitial injection. This behavior is explained by the annealing of vacancy-fluorine clusters, which anneal quicker under interstitial injection because the injected interstitials annihilate vacancies in the clusters
    corecore