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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52678525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.univ-grenoble-alpes.fr/hal-01103079




Strain mapping at the nanoscale using precession electron diffraction in transmission
electron microscope with off axis camera
M. P. Vigouroux, V. Delaye, N. Bernier, R. Cipro, D. Lafond, G. Audoit, T. Baron, J. L. Rouvière, M. Martin, B.
Chenevier, and F. Bertin 
 
Citation: Applied Physics Letters 105, 191906 (2014); doi: 10.1063/1.4901435 
View online: http://dx.doi.org/10.1063/1.4901435 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/19?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Improved strain precision with high spatial resolution using nanobeam precession electron diffraction 
Appl. Phys. Lett. 103, 241913 (2013); 10.1063/1.4829154 
 
Improved precision in strain measurement using nanobeam electron diffraction 
Appl. Phys. Lett. 95, 123114 (2009); 10.1063/1.3224886 
 
Local strain measurement in a strain-engineered complementary metal-oxide-semiconductor device by
geometrical phase analysis in the transmission electron microscope 
Appl. Phys. Lett. 93, 081909 (2008); 10.1063/1.2970050 
 
nlinImproving spatial resolution of convergent beam electron diffraction strain mapping in silicon microstructures 
Appl. Phys. Lett. 86, 063508 (2005); 10.1063/1.1855408 
 
Application of convergent beam electron diffraction to two-dimensional strain mapping in silicon devices 
Appl. Phys. Lett. 82, 2172 (2003); 10.1063/1.1565181 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  152.77.24.10

On: Mon, 12 Jan 2015 07:21:19

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1177509525/x01/AIP-PT/Keysight_APLArticleDL_010715/en_keysight_728x90_3325-2Pico.png/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=M.+P.+Vigouroux&option1=author
http://scitation.aip.org/search?value1=V.+Delaye&option1=author
http://scitation.aip.org/search?value1=N.+Bernier&option1=author
http://scitation.aip.org/search?value1=R.+Cipro&option1=author
http://scitation.aip.org/search?value1=D.+Lafond&option1=author
http://scitation.aip.org/search?value1=G.+Audoit&option1=author
http://scitation.aip.org/search?value1=T.+Baron&option1=author
http://scitation.aip.org/search?value1=J.+L.+Rouvi�re&option1=author
http://scitation.aip.org/search?value1=M.+Martin&option1=author
http://scitation.aip.org/search?value1=B.+Chenevier&option1=author
http://scitation.aip.org/search?value1=B.+Chenevier&option1=author
http://scitation.aip.org/search?value1=F.+Bertin&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4901435
http://scitation.aip.org/content/aip/journal/apl/105/19?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/103/24/10.1063/1.4829154?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/12/10.1063/1.3224886?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/93/8/10.1063/1.2970050?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/93/8/10.1063/1.2970050?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/86/6/10.1063/1.1855408?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/82/13/10.1063/1.1565181?ver=pdfcov


Strain mapping at the nanoscale using precession electron diffraction
in transmission electron microscope with off axis camera

M. P. Vigouroux,1,2 V. Delaye,1,2 N. Bernier,1,2 R. Cipro,1,3 D. Lafond,1,2 G. Audoit,1,2

T. Baron,1,3 J. L. Rouvière,1,4 M. Martin,1,3 B. Chenevier,1,5 and F. Bertin1,2

1Universit�e Grenoble Alpes, F-38000 Grenoble, France
2CEA, LETI, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9, France
3CNRS, LTM, F-38000 Grenoble, France
4CEA, INAC, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9, France
5LMGP, CNRS, 3 parvis Louis N�eel, 38016 GRENOBLE Cedex 1, France

(Received 1 August 2014; accepted 29 October 2014; published online 12 November 2014)

Precession electron diffraction is an efficient technique to measure strain in nanostructures by

precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that

an advanced diffraction pattern treatment allows reproducible and precise strain measurements to

be obtained using a default 512� 512 DigiSTAR off-axis camera both in advanced or non-

corrected transmission electron microscopes. This treatment consists in both projective geometry

correction of diffraction pattern distortions and strain Delaunay triangulation based analysis.

Precision in the strain measurement is improved and reached 2.7� 10�4 with a probe size

approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs

quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch

does not induce in-plane strain fluctuations in the InGaAs QW region. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901435]

Precession Electron Diffraction (PED)1,2 is an innova-

tive method for the crystallographic study of materials. The

advantage of PED is to minimize the diffraction dynamical

effects to such an extent that diffraction images can be ana-

lysed using a kinematical approach with minimal user inter-

vention. Widely used to obtain precise orientation and phase

mappings3 or solving crystal structures,4 PED can also be

used to improve measurement of strain in nanostructures.5

In practice, one usual way of precessing the incident

beam is performed with the widely used NanoMEGAS’s

“DigiSTAR” add-on device.7 Instead of working with the

high-resolution on-axis CCD camera, this system is equipped

with the high frame rate and high sensitivity Stingrey detec-

tion system that allows for fast mapping experiments.

However, this camera is focused on the fluorescent screen,

and it is therefore deported from the microscope optical axis.

This off-axis camera induces significant perspective distor-

tions in the measured diffraction patterns. As a consequence,

the use of standard diffraction pattern treatment, e.g., a noise

reduction filter and a two-dimensional Gaussian fitting of

diffracted spots,8 may be inappropriate due to the loss of

periodicity in the acquired patterns.

In this letter, we demonstrate that PED can be advanta-

geously used in a TEM to map strain at nanoscale in an

unexplored situation where the use of an off-axis camera

requires an advanced diffraction pattern treatment. We pro-

pose here an alternative strain analysis able to find a “quasi-

kinematic” disc shaped region containing strongly correlated

spots, and a way to correct off-axis camera’s distortions. We

have performed PED strain measurements on a simple refer-

ence sample and in a more complex InGaAs structure for

microelectronic applications.

PED measurements were made using a JEOL-

JEM2010FEF non-corrected TEM operating at 200 kV.

Precession beam scan alignment6 was performed employing

NanoMEGAS’s “DigiSTAR” add-on device.7 Precession

semi-angle was set to 1.44� to take full advantage of PED kin-

ematical behaviour. With 10 lm condenser aperture, a probe

size as small as 4.2 nm full width at half maximum is obtained

on the sample with a convergence semi-angle of 0.5 mrad.

PED biaxial strain measurements were made on the

h110i zone axis of samples. Each PED pattern is recorded

every 2.7 nm in a 200 nm� 240 nm area indicated in Fig.

2(a) using a 512� 512 pixel Stingrey camera deported from

the microscope optical. As mentioned above, the perspective

effect induces a periodicity loss in the acquired images. In

the present work, the periodicity of the diffraction pattern is

retrieved using classical projective geometry.9

To this end, we maximize—using a simplex algo-

rithm—the diffraction pattern power spectral density root

mean square (rms) contrast10 by adjusting three parameters:

the camera distance, the roll angle, and the off axis angle

(the total spectral energy is set to unity all along this treat-

ment). The three parameters are used to correct the whole

PED data set. Figures 1(a) and 1(b) show raw and corrected

silicon h110i zone axis diffraction patterns, respectively.

After projective geometry correction, the diffraction pattern

of an amorphous phase (Figure 1(c)) only shows the residual

astigmatism minimized by the user during the microscope

alignment.

The two-dimensional fitting of the complete set of dif-

fracted spots is the most widespread means to retrieve strain

from diffraction patterns, as applied to nanobeam diffraction

(NBD)8,11 precession5 or convergent beam electron diffrac-

tion (CBED)8 experiments. In this paper, we propose an al-

ternative method that results in an increase of the strain

sensitivity (as shown in Table I). In contrast to standard

methods that use the whole image (in real or Fourier space),

0003-6951/2014/105(19)/191906/4/$30.00 VC 2014 AIP Publishing LLC105, 191906-1
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this method is able to find a “quasi-kinematic” disc shaped

region containing strongly correlated spots and rejecting

variable spurious ones.

First, both high and low frequencies are filtered to flatten

the image and suppress spurious noise. Then, all the pixel in-

tensity below a threshold value are set to zero; this threshold

is set to Imeanþ 3.Istd where the mean intensity Imean and

standard deviation Istd are calculated in a diffraction free

area of the filtered image. Each spot is indexed by the posi-

tion ~ri of its intensity centre of mass using ImageJ.13,14 A

Delaunay triangulation15 is applied to the ensemble~ri result-

ing in a set of Delaunay segments, ~L
Del

ij ¼~ri �~rj, indexed

by their polar coordinates (hij, lij). The histogram of the

angles hij modulo p, build with a binning of 0.5�, shows dif-

ferent classes of direction (indexed by k) characterized by

their mean angle hk and angle standard deviation rk. The his-

togram of the lij edges associated to each class is built with a

binning of 0.5 pixels. The mean length L
ð1Þ
k and the standard

deviation lk of the main class are deduced as well as the lat-

tice vectors ~gij ¼ ðLð1Þk ; hkÞ. The method sensitivity is limited

by both a systematic error induced by the camera resolution

and a statistical error. The former decreases as the measured

length increase, and the latter decrease as the measure sam-

ple population increases. A trade-off between the segments

respective lengths and the total number of segment can be

found to enhance the sensitivity of the strain analysis.

Therefore, more reliable ~gij ¼ ðLðnÞk ; hkÞ lattice vectors are

obtained using lengths satisfying L
ðnÞ
k ¼ nL

ð1Þ
k .

Both the strain tensor, eij, and the rotation tensor, Xij, of

the crystal are obtained using the method exposed in the

Ref. 16. The reciprocal matrix

G ¼ g1x g1y

g2x g2y

� �

is built by selecting two lattice vectors among the previously

obtained ~gk (Fig. 1(d)). The components gkx;ky stand for the

Cartesian coordinate of ~gk . If G0 is defined as the reciprocal

matrix of an unstrained area, the strain and rotation tensor are,

respectively, the symmetric component eij ¼ ðDij þ DjiÞ=2

and the antisymmetric component, Xij ¼ ðDij � DjiÞ=2, of the

displacement tensor D ¼ G�1G0 � 1:
The reference sample we have used to benchmark the

method has been prepared by Reduced Pressure Chemical

Vapour Deposition (RPCVD) on a [001] Si Substrate. It is

composed by four 10 6 1 nm SiGe layers with different con-

tents in germanium (respectively, 20%, 31%, 38%, and 45%)

separated by 30 nm of Si and covered with a 150 nm Si cap-

ping layer. A Focused Ion Beam (FIB) tool (operating at

30 kV and 5 kV) has been used to provide a 50 nm thick

parallel-sided lamella with reduced surface damage. This

sample was specifically designed to benchmark strain stud-

ies17 as it is possible to simulate the strain expected in TEM

using the COMSOL
VR

software. A three-dimensional finite

element simulation is performed to take into account the

stress relaxation phenomena of the thin foil. The simulated

strains are averaged along the [1–10] and [�110] directions.

Finally, the strain profile along the [00–1] direction is convo-

luted with a 4.2 nm wide electron probe. The simulated exx

strain profile is given in Figure 2(b) (solid black curve).

FIG. 1. [110] PED diffraction pattern obtained in silicon (a) without and (b)

with projective geometry correction. (c) Electron Nano Beam Diffraction

(NBD) amorphous diffraction pattern obtained with projective geometry cor-

rection. (d) Delaunay triangulation based strain analysis on Si [110] PED

pattern. Distances between direct neighbours (yellow lines) are used (n¼ 1)

in a disc shaped transmit centred region with diameter d¼ 48 mrad illus-

trated with the red circle.

FIG. 2. (a) SiGe Strain mapping with Precession (semi-angle set to 1.44�);
(b) comparison between the exx SiGe strain profile obtained by finite element

simulation (solid black curve) and the experimental profiles after different

diffraction pattern treatments.

191906-2 Vigouroux et al. Appl. Phys. Lett. 105, 191906 (2014)
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The proposed method, i.e., perspective correction com-

bined with a Delaunay based treatment, is applied to the

PED patterns measured on the reference sample. Results

show that the strain sensitivity measured with first-neighbour

segments increase until spots outside a transmit beam cen-

tred disc-shaped area, with diameter d¼ 48 mrad, is used

(Fig. 1(d)). In addition, the best strain sensibility is reached

with second-neighbour segments measurements (n¼ 2). The

experimental strain mapping after this data treatment is

shown in Figure 2(a). The obtained strain precision is equal

to 2.7.10�4, as estimated by measuring the rms in 800 silicon

contiguous exx values in an unstrained area. This precision is

(i) close to the one obtained by PED measured on high-

resolution on-axis camera,5 (ii) approximately one order of

magnitude lower than that achieved by Geometric Phase

Analysis (GPA) on non-corrected microscopes.18 In the fol-

lowing, our model efficiency is tested by comparing the pre-

cision and accuracy obtained on the same PED patterns

treated by standard treatments.

For this purpose, the maxima positions are determined

using a two-dimensional Gaussian fitting of the diffracted

spots, as typically done in the literature.5,8,11,12 An autocorre-

lation of the PED pattern is often implemented11,12 to signifi-

cantly reduce the noise. Therefore, the autocorrelation of

each noise filtered diffraction pattern is first calculated.

Second, three to four spots positions are fitted with a 2D

Gaussian function to construct the reciprocal matrix. Finally,

the strain is obtained with respect to an unstrained area recip-

rocal matrix of reference.

Results shown in Table I prove that the use of a standard

data treatment, referred to as “Autocorrelation” in Table I,

leads to a drop in strain precision, either with or without

prior perspective correction.

The accuracy is here defined as the mean squared error

calculated between the simulated (using 3D finite element

modelling) and experimental exx strain profiles after different

data treatments (shown in Figure 2(b)). As seen from Table

I, the accuracy is also substantially improved using the pro-

posed method. Interestingly, as seen from Figure 2(b), the

standard methods fail to predict the slightly compressive

strain values in-between the SiGe layers.

Note that an improvement of the PED spatial mapping

resolution can be obtained by increasing the beam conver-

gence semi-angle in a TEM equipped with a three condenser

lenses system. This leads however to disk-shaped diffraction

spots with residual dynamical contrast. In that case, the

positions detection of diffraction disks can be obtained more

accurately using the centroid approach available in ImageJ13,14

(as it averages the x and y coordinates of the pixels within each

disk) instead of using the centre of mass method.

The method is also applied to an actual material investi-

gation on InGaAs quantum-well (QW) device19 using a non-

common GaAs reference. This high injection velocity mate-

rial is a promising candidate20,21 for Metal Oxide

Semiconductor Field Effect Transistor (MOSFET) channels.

The device is made of a 10-nm-thick InGaAs QW layer com-

posed of 10% indium. Special attention was paid to the QW

elaboration since misfit dislocations located at the GaAs/Si

interface are often observed due to the high lattice mis-

match.22 For this purpose, local GaAs/AlAs/InGaAs/AlAs/

GaAs multi-layers growth has been performed15 in an

Applied Materials metalorganic chemical vapor deposition

(MOCVD) reactor on 300 mm Si (100) substrates, as sche-

matically illustrated in Fig. 3(a).

A 80-nm-thick lamella was prepared using FIB tool.

The final thinning was performed at 1 keV to reduce implan-

tation and amorphisation. The PED analysis has been carried

out on a 160� 85 nm2 area using the same experimental con-

ditions as those used for the reference sample (e.g., preces-

sion semi-angle of 1.44�). The perspective correction and

Delaunay based treatment (with d¼ 48 mrad and n¼ 2) were

then applied to the acquired patterns.

As seen from Figure 3(b), results indicate a variation of

the exx strain component in GaAs close to the GaAs/Si inter-

face. Above 100 nm of GaAs, no significant variation is

observed in the exx strain map. The exx and eyy strain compo-

nents fluctuations in the InGaAs QW, and its near environ-

ment (6 20 nm), are lower than 0.3% along the [110] x

direction. These results give evidence of a homogenous

strain state of the QW. The eyy strain map exhibits a constant

�1% tensile strain within the InGaAs QW. This is mostly

due to the chemical composition variations and will be

addressed in following works, including chemical analysis.

FIG. 3. (a) GaAs/AlAs/InGaAs/AlAs/GaAs multi-layers grown on 300 mm

Si (100) substrates; (b) multi-layers device exx, eyy strain mapping compo-

nents obtained with precession (semi-angle set to 1.44�).

TABLE I. Comparison between different data treatments applied to the

same set of PED patterns measured on the reference sample.

PED analysis Precision Accuracy

Delaunay based method

with perspective

correction

2.7� 10�4 1.4� 10�2

Autocorrelation based

method without

perspective correction

3.7� 10�4 3.6� 10�2

Autocorrelation based

method with perspective

correction

4.0� 10�4 2.0� 10�2

191906-3 Vigouroux et al. Appl. Phys. Lett. 105, 191906 (2014)
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This PED analysis is therefore able control that the QW

device design efficiently avoids InGaAs layer from being

affected negatively by the silicon substrate proximity, which

may, e.g., introduce a heterogeneous strain distribution

within the QWs. It is also able to distinguish the AlAs, GaAs

0.5% lattice parameter difference. This was made possible

by the combination of a high strain precision (<0.03%) and

acceptable spatial resolution (�4 nm) of PED performed in a

non-corrected TEM with an off-axis camera. In contrast,

other strain techniques performed in the same conventional

microscope could not a priori provide such information on

the InGaAs QW, e.g., the same level of strain precision

(�0.04%) with GPA is obtained for a 9 nm spatial resolu-

tion.18 The exy strain component has also been obtained from

the strain analysis. It is not shown here as no relevant fluctu-

ation appears due to the quadratic lattice deformation.

In conclusion, the introduction of precession in nano-

beam electron diffraction can be used in strain measurements

while working with an off axis camera, either on corrected

or non-corrected TEMs. Perspective corrected PED patterns

associated with a Delaunay based method improve the qual-

ity and robustness of strain analysis. This local approach is

able to find a “quasi-kinematic” transmitted beam centred

disc shaped region containing strongly correlated spots and

rejecting variable spurious ones. In the present work, a preci-

sion of 2.7� 10�4 with a probe size as small as 4.2 nm

(FWHM) is obtained on a conventional TEM. InGaAs QW

device’s results show that the GaAs/Si mismatch does not

induce in-plane strain fluctuations in the active QW region.

This study was made possible through funding provided

by French ANR LABEX MINOS and French ANR AMOS
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Nanocharacterisation Platform of the CEA Grenoble,

MINATEC Campus.
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