1,754 research outputs found

    Fiber and crystals dual readout calorimeters

    Get PDF
    The RD52 (DREAM) collaboration is performing R&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO4 crystals, as well as BGO and BSO, with the aim of realizing a crystal based dual readout detector. We will describe our results, focusing on the more promising properties of homogeneous media for the technique. Guidelines for additional developments on crystals will be also given. Finally we discuss the construction techniques that we have used to assemble our prototypes and give an overview of the ones that could be industrialized for the construction of a full hermetic calorimeter

    Construction and commissioning of the tracker module for the SuperNEMO experiment

    Get PDF
    The SuperNEMO experiment will search for neutrinoless double-beta decay in the Modane Underground Laboratory. This decay mode, if observed, confirms that neutrinos are Majorana fermions. It would be a new lepton violating process, and would provide a measurement of the absolute neutrino mass. The SuperNEMO experiment is designed to reach a half-life sensitivity of 1026 years corresponding to an effective Majorana neutrino mass of 50−100 meV. The SuperNEMO demonstrator module is the first stage of the experiment, containing 7kg of 82Se, with an expected sensitivity of T½ (0ν) > 6.5×1024 y after 2.5 years. Full topological event reconstruction is achieved through the use of a wire tracker operating in Geiger mode combined with scintillator calorimeter modules. Construction of the demonstrator module is well underway. We present the design of the tracker, and the current status of the construction and commissioning efforts

    Influence of conformational fluctuations on enzymatic activity: modelling the functional motion of beta-secretase

    Full text link
    Considerable insight into the functional activity of proteins and enzymes can be obtained by studying the low-energy conformational distortions that the biopolymer can sustain. We carry out the characterization of these large scale structural changes for a protein of considerable pharmaceutical interest, the human β\beta-secretase. Starting from the crystallographic structure of the protein, we use the recently introduced beta-Gaussian model to identify, with negligible computational expenditure, the most significant distortion occurring in thermal equilibrium and the associated time scales. The application of this strategy allows to gain considerable insight into the putative functional movements and, furthermore, helps to identify a handful of key regions in the protein which have an important mechanical influence on the enzymatic activity despite being spatially distant from the active site. The results obtained within the Gaussian model are validated through an extensive comparison against an all-atom Molecular Dynamics simulation.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo Workshop

    Single-hit resolution measurement with MEG II drift chamber prototypes

    Get PDF
    Drift chambers operated with helium-based gas mixtures represent a common solution for tracking charged particles keeping the material budget in the sensitive volume to a minimum. The drawback of this solution is the worsening of the spatial resolution due to primary ionisation fluctuations, which is a limiting factor for high granularity drift chambers like the MEG II tracker. We report on the measurements performed on three different prototypes of the MEG II drift chamber aimed at determining the achievable single-hit resolution. The prototypes were operated with helium/isobutane gas mixtures and exposed to cosmic rays, electron beams and radioactive sources. Direct measurements of the single hit resolution performed with an external tracker returned a value of 110 μ\mum, consistent with the values obtained with indirect measurements performed with the other prototypes.Comment: 18 pages, 18 figure

    Characterization of Molecular Determinants of the Conformational Stability of Macrophage Migration Inhibitory Factor: Leucine 46 Hydrophobic Pocket

    Get PDF
    Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state

    Updates on the most recent results in dual readout calorimetry

    Get PDF
    The Dual REAdout Method (DREAM) consists in comparing the scintillation and Cherenkov light generated in the shower development process. By comparing the two, the electromagnetic fraction of the hadronic shower can be measured event-by-event, to eliminate the effects of fluctuations in this fraction. In this paper the DREAM fiber calorimeter and its successor, the newDREAM prototype that is currently under construction, will be described. We will also report on the efforts to study the Cherenkov component of the output of high-Z crystals and to realize a dual-readout electromagnetic section that can achieve outstanding electromagnetic resolution whitout compromising the hadronic resolution

    Dual-readout Calorimetry

    Full text link
    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\sigma}/E \approx 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape
    corecore