3,091 research outputs found

    Locating the Source of Diffusion in Large-Scale Networks

    Get PDF
    How can we localize the source of diffusion in a complex network? Due to the tremendous size of many real networks--such as the Internet or the human social graph--it is usually infeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely-placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N^{\alpha}), where \alpha=1 for arbitrary trees, and \alpha=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.Comment: To appear in Physical Review Letters. Includes pre-print of main paper, and supplementary materia

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores

    Get PDF
    Electron-capture and β\beta-decay of nuclei in the core of massive stars play an important role in the stages leading to a type II supernova explosion. Nuclei in the f-p shell are particularly important for these reactions in the post Silicon-burning stage of a presupernova star. In this paper, we characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR) for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained from high energy, forward scattering (p,n) and (n,p) reactions. The energy of the GTGR centroid EGTE_{GT} is further generalised as function of nuclear properties like mass number, isospin and other shell model properties of the nucleus. Since a large fraction of the GT strength lies in the GTGR region, and the GTGR is accessible for weak transitions taking place at energies relevant to the cores of presupernova and collapsing stars, our results are relevant to the study of important ee^--capture and β\beta-decay rates of arbitrary, neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and Isobaric Analog States (IAS) energy systematics we compare the coupling coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename: Sutfigs.uu). If you have difficulty printing the figures, please contact [email protected]. Accepted for publication in Phys. Rev. C, Nov 01, 199

    Vector quantization of image subbands: a survey

    Get PDF
    Subband and wavelet decompositions are powerful tools in image coding because of their decorrelating effects on image pixels, the concentration of energy in a few coefficients, their multirate/multiresolution framework, and their frequency splitting, which allows for efficient coding matched to the statistics of each frequency band and to the characteristics of the human visual system. Vector quantization (VQ) provides a means of converting the decomposed signal into bits in a manner that takes advantage of remaining inter and intraband correlation as well as of the more flexible partitions of higher dimensional vector spaces. Since 1988, a growing body of research has examined the use of VQ for subband/wavelet transform coefficients. We present a survey of these methods

    Assessing Digital Surface Models by Verifying Shadows: A Sensor Network Approach

    Get PDF
    We propose to use wireless sensor networks to assess the accuracy and application of Digital Surface Models (DSM) for the study of shadowing and solar radiation over the built environment. Using the ability of sensor network data to provide information about solar radiation and predicting the exact time of the day that the Sun starts radiating a sensor, a comparative study and statistical analysis can be undertaken in order to evaluate the accuracy of the DSM for shadowing and radiation studies using image processing techniques. Two DSMs of the EPFL campus with different cell resolutions (1 meter and 0.5 meters), considering only information about ground, buildings with vertical walls and trees, are constructed step by step and employed. Three DSMs of the same campus with a cell resolution of 1 meter derived from raw LIDAR data and common interpolation techniques, such as Triangulated Irregular Network (TIN), kriging, Inverse Distance Weighting (IDW), are also used for comparison

    Practical solution to the Monte Carlo sign problem: Realistic calculations of 54Fe

    Get PDF
    We present a practical solution to the "sign problem" in the auxiliary field Monte Carlo approach to the nuclear shell model. The method is based on extrapolation from a continuous family of problem-free Hamiltonians. To demonstrate the resultant ability to treat large shell-model problems, we present results for 54Fe in the full fp-shell basis using the Brown-Richter interaction. We find the Gamow-Teller beta^+ strength to be quenched by 58% relative to the single-particle estimate, in better agreement with experiment than previous estimates based on truncated bases.Comment: 11 pages + 2 figures (not included

    Complete 0 hbar omega calculations of Gamow-Teller strengths for nuclei in the iron region

    Get PDF
    Gamow-Teller strengths for selected nuclei in the iron region (A~56) have been investigated via shell-model Monte Carlo calculations with realistic interactions in the complete fp basis. Results for all cases show significant quenching relative to single-particle estimates, in quantitative agreement with (n,p) data. The J=1,T=0 residual interaction and the f_{7/2}-f_{5/2} spin-orbit splitting are shown to play major roles in the quenching mechanism. Calculated B(E2, 2^+_1 -> 0^+_1) values are in fair agreement with experiment using effective charges of e_p=1.1e and e_n=0.1e.Comment: 13 pages + 1 postscript file, Caltech preprint MAP-16

    Electron capture on iron group nuclei

    Get PDF
    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the pre-collapse evolution of supernovae. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type II supernova evolution

    Gamow-Teller strength distributions in fp-shell nuclei

    Get PDF
    We use the shell model Monte Carlo method to calculate complete 0f1p-shell response functions for Gamow-Teller (GT) operators and obtain the corresponding strength distributions using a Maximum Entropy technique. The approach is validated against direct diagonalization for 48Ti. Calculated GT strength distributions agree well with data from (n,p) and (p,n) reactions for nuclei with A=48-64. We also calculate the temperature evolution of the GT+ distributions for representative nuclei and find that the GT+ distributions broaden and the centroids shift to lower energies with increasing temperature

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac
    corecore