8,713 research outputs found

    First determination of the CPCP content of Dπ+ππ+πD \to \pi^+\pi^-\pi^+\pi^- and updated determination of the CPCP contents of Dπ+ππ0D \to \pi^+\pi^-\pi^0 and DK+Kπ0D \to K^+K^-\pi^0

    Get PDF
    Quantum-correlated ψ(3770)DDˉ\psi(3770) \to D\bar{D} decays collected by the CLEO-c experiment are used to perform a first measurement of F+4πF_+^{4\pi}, the fractional CPCP-even content of the self-conjugate decay Dπ+ππ+πD \to \pi^+\pi^-\pi^+\pi^-, obtaining a value of 0.737±0.0280.737 \pm 0.028. An important input to the measurement comes from the use of DKS0π+πD \to K^0_{\rm S}\pi^+\pi^- and DKL0π+πD \to K^0_{\rm L}\pi^+\pi^- decays to tag the signal mode. This same technique is applied to the channels Dπ+ππ0D \to\pi^+\pi^-\pi^0 and DK+Kπ0D \to K^+K^-\pi^0, yielding F+πππ0=1.014±0.045±0.022F_+^{\pi\pi\pi^0} = 1.014 \pm 0.045 \pm 0.022 and F+KKπ0=0.734±0.106±0.054F_+^{KK\pi^0} = 0.734 \pm 0.106 \pm 0.054, where the first uncertainty is statistical and the second systematic. These measurements are consistent with those of an earlier analysis, based on CPCP-eigenstate tags, and can be combined to give values of F+πππ0=0.973±0.017F_+^{\pi\pi\pi^0} = 0.973 \pm 0.017 and F+KKπ0=0.732±0.055F_+^{KK\pi^0} = 0.732 \pm 0.055. The results will enable the three modes to be included in a model-independent manner in measurements of the unitarity triangle angle γ\gamma using BDKB^\mp \to DK^\mp decays, and in time-dependent studies of CPCP violation and mixing in the DDˉD\bar{D} system.Comment: Minor revisions following journal acceptanc

    Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: Elastic versus inelastic interactions

    Full text link
    We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughly investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.Comment: Submitted to EPJD, EuroQUAM special issues "Cold Quantum Matter - Achievements and Prospects", v2 with updated calibration of magnetic field (+4mG correction) and updated figures 4 and

    Co(III) and Ni(II) Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    Get PDF
    DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy)2qbdp](PF6)n·xH2O (where M = Co(III) or Ni(II), bpy = 2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n = 3 or 2 and x = 5 or 2) have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb) has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III) and Ni(II) complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3 × 106 and 3.1 × 105 M−1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III) complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease

    Recent MILC spectrum results

    Get PDF
    We report on results from three spectrum calculations with staggered quarks: 1) a quenched calculation with the standard action for the gluons and quarks; 2) a quenched calculation with improved actions for both the gluons and quarks; and 3) a calculation with two flavors of dynamical quarks using the standard actions for the gluons and quarks.Comment: Poster presented at LATTICE96(spectrum);4 pages of LaTeX, uses espcrc2 and epsf, six postscript figures include

    Structure and Decay Properties of Th Isotopes Using E-RMFT Formalism

    Get PDF
    In the present scenario, the search for the thermally fissile nuclei is crucial and also important not only for the research background of nuclear physics but also for the great social and economic impact on the country. Many theoretical works have been performed to analyze a series of Th and U-isotopes and found that some of these isotopes are stable against α-decays and spontaneous fission. Here, we have chosen the isotopic chain of Th-nuclei for the present analysis using relativistic mean-field formalism. The work also explores a few stable isotopes in this region of the nuclear landscape, which is crucial for understanding the exotic region of the nuclear landscape. The objective of this work is to study the bulk properties such as binding energies, root mean square charge radii, neutron-proton radii, neutron skin-thickness as well as intrinsic properties such as excitation energy and specific heat for the 216-238Th-isotopic chain. Furthermore, the stability of these isotopes is investigated through their possible decay chain analysis. The relativistic mean-field theory was used to obtain the nuclear bulk properties, namely, binding energies, root-mean-square charge radii, neutron skin-thickness, and excitation energy. The steady solution of the temperature-dependent effective relativistic mean-field equations was obtained self-consistently by taking different inputs of the initial deformations. All the calculations were done for NL3, FSUGarnet and IOPB-I parameter sets for 216-238Th-isotopes. The decay energy of α (Qα) and β-decay (Qβ) were calculated from the binding energies and were further used to obtain the corresponding half-lives. We have analyzed the structural and decay properties of 216-238Th isotopes. The excitation energy and specific heat are also estimated for these considered nuclei by using the temperature-dependent effective relativistic mean-field (E-RMFT) formalism for NL3, FSUGarnet and IOPB-I parameters sets. The calculated results are compared with the available experimental data and found similar observations for all the parameter sets at a given temperature. The excitation energy study signifies the shell melting point where maybe the shape transition occurs. Three phenomenological formulae such as Viola-Seaborg, Royer and modified universal decay law are adopted for the calculation of α-decay half-lives. We found lower values of α-decay half-lives indicating a higher rate of β-decay for the isotopic chain

    Liquid-like behaviour of gold nanowire bridges

    Get PDF
    A combination of Focused Ion Beam (FIB) and Reactive Ion Etch (RIE) was used to fabricate free standing gold nanowire bridges with radii of 30 nm and below. These were subjected to point loading to failure at their mid-points using an Atomic Force Microscope (AFM), providing strength and deformation data. The results demonstrate a dimensionally dependent transition from conventional solid metallic properties to liquid-like behaviour including the unexpected reformation of a fractured bridge. The work reveals mechanical and materials properties of nanowires which could have significant impact on nanofabrication processes and nanotechnology devices such as Nano Electro Mechanical Systems (NEMS)

    Detection of a Series of X-ray Dips Associated with a Radio Flare in GRS 1915+105

    Get PDF
    We report the detection of a series of X-ray dips in the Galactic black hole candidate GRS 1915+105 during 1999 June 6-17 from observations carried out with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment on board the Indian satellite IRS-P3. The observations were made after the source made a transition from a steady low-hard state to a chaotic state which occuered within a few hours. Dips of about 20-160 seconds duration are observed on most of the days. The X-ray emission outside the dips shows a QPO at ~ 4 Hz which has characteristics similar to the ubiquitous 0.5 - 10 Hz QPO seen during the low-hard state of the source. During the onset of dips this QPO is absent and also the energy spectrum is soft and the variability is low compared to the non-dip periods. These features gradually re-appear as the dip recovers. The onset of the occurrence of a large number of such dips followed the start of a huge radio flare of strength 0.48 Jy (at 2.25 GHz). We interpret these dips as the cause for mass ejection due to the evacuation of matter from an accretion disk around the black hole. We propose that a super-position of a large number of such dip events produces a huge radio jet in GRS 1915+105.Comment: 18 pages, 7 figures, Accepted for publication in Ap
    corecore