2,308 research outputs found

    Dimerized ground states in spin-S frustrated systems

    Get PDF
    We study a family of frustrated anti-ferromagnetic spin-SS systems with a fully dimerized ground state. This state can be exactly obtained without the need to include any additional three-body interaction in the model. The simplest members of the family can be used as a building block to generate more complex geometries like spin tubes with a fully dimerized ground state. After present some numerical results about the phase diagram of these systems, we show that the ground state is robust against the inclusion of weak disorder in the couplings as well as several kinds of perturbations, allowing to study some other interesting models as a perturbative expansion of the exact one. A discussion on how to determine the dimerization region in terms of quantum information estimators is also presented. Finally, we explore the relation of these results with a the case of the a 4-leg spin tube which recently was proposed as the model for the description of the compound Cu2_2Cl4_4D8_8C4_4SO2_2, delimiting the region of the parameter space where this model presents dimerization in its ground state.Comment: 10 pages, 9 figure

    Phase diagram study of a dimerized spin-S zig-zag ladder

    Get PDF
    The phase diagram of a frustrated spin-SS zig-zag ladder is studied through different numerical and analytical methods. We show that for arbitrary SS, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar-Ghosh point a particular member of the family. We show that the system presents a transition between a dimerized phase to a N\'eel-like phase for S=1/2S=1/2, and spiral phases can appear for large SS. The phase diagram is characterized by means of a generalization of the usual Mean Field Approximation (MFA). The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the Random Phase Approximation (RPA). Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like DMRG are also presented.Comment: 14 pages, 6 figures. Some typos were corrected, and notation was clarifie

    Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice

    Get PDF
    We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger boson description of the spin operators followed by a mean field decoupling, the magnetic phase diagram is studied as a function of the frustration coupling J2J_{2} and the interlayer coupling J⊥J_{\bot}. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization and spin-spin correlations. We observe a phase with a spin gap and short range N\'eel correlations that survives for non-zero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of N\'eel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence bond crystal phase to an interlayer valence bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin wave approach to study the phase diagram as a function of the spin SS, the frustration and the interlayer couplings.Comment: 10 pages, 9 figure

    Structural studies of mesoporous ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} mixed oxides for catalytical applications

    Full text link
    In this work the synthesis of ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} were developed, based on the process to form ordered mesoporous materials such as SBA-15 silica. The triblock copolymer Pluronic P-123 was used as template, aiming to obtain crystalline single phase walls and larger specific surface area, for future applications in catalysis. SAXS and XRD results showed a relationship between ordered pores and the material crystallization. 90% of CeO2_{2} leaded to single phase homogeneous ceria-zirconia solid solution of cubic fluorite structure (Fm3ˉ\bar{3}m). The SiO2_{2} addition improved structural and textural properties as well as the reduction behavior at lower temperatures, investigated by XANES measurements under H2_{2} atmosphere

    Desempenho de genótipos de arroz irrigado em Mato Grosso do Sul.

    Get PDF
    bitstream/item/65825/1/COT87-2004.pd

    Nonlinear transport and oscillating magnetoresistance in double quantum wells

    Full text link
    We study the evolution of low-temperature magnetoresistance in double quantum wells in the region below 1 Tesla as the applied current density increases. A flip of the magneto-intersubband oscillation peaks, which occurs as a result of the current-induced inversion of the quantum component of resistivity, is observed. We also see splitting of these peaks as another manifestation of nonlinear behavior, specific for the two-subband electron systems. The experimental results are quantitatively explained by the theory based on the kinetic equation for the isotropic non-equilibrium part of electron distribution function. The inelastic scattering time is determined from the dependence of the inversion magnetic field on the current.Comment: 20 pages, 10 figure

    Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning

    Full text link
    We apply unsupervised learning techniques to classify the different phases of the J1−J2J_1-J_2 antiferromagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system using convolutional autoencoders. These neural networks can detect phase transitions in the system via `anomaly detection', without the need for any label or a priori knowledge of the phases. We present different ways of training these autoencoders and we evaluate them to discriminate between distinct magnetic phases. In this process, we highlight the case of high temperature or even random training data. Finally, we analyze the capability of the autoencoder to detect the ground state degeneracy through the reconstruction error.Comment: 11 pages, 15 figure

    Manejo do solo e instalação da cultura do algodoeiro.

    Get PDF
    bitstream/CNPA/18297/1/CIRTEC91.pd
    • …
    corecore