13,888 research outputs found

    Spin state transition in LaCoO3 by variational cluster approximation

    Full text link
    The variational cluster approximation is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase of the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single particle spectral function agrees well with experiment, the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin orbit coupling and local lattice relaxation.Comment: Revtex file with 10 eps figure

    Correlated band structure of NiO, CoO and MnO by variational cluster approximation

    Full text link
    The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle spectral function of the transition metal oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6-cluster. The single-particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand potential of the lattice system. The stationary point is found by a crossover procedure which allows to go continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain irrelevant degrees of freedom which have marginal impact on the grand potential and which need to be excluded to obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.Comment: 14 pages, 17 figure

    Long-term emissions from mechanically biologically treated waste: Influence on leachate quality – Part II

    Get PDF
    Mechanical biological pretreatment of waste prior to disposal is proven to effectively reduce the long-term polluting potentials of landfilled waste. The combined effect of waste pretreatment and flushing, as is possible in landfills operated in tropical or sub-tropical countries, has the potential to further reduce the landfills’ environmental impact. In this study, long-term emissions from pretreated waste were monitored in anaerobic leaching columns operated at increasing liquid-to-solid ratios. The efficiency of the pretreatment, conducted in full-scale passively aerated windrows, was assessed by comparing different treatment periods (8 and 16 weeks). In order to understand the influence of sorting (separated collection) on the pretreatment, the treated waste was sieved in a 50mm diameter sieve and the coarse and fine fractions separately analysed in the leaching columns. The results showed that treating the waste markedly reduces the COD and NH3-N loadings while the coarse fractions show a greater long-term pollutant risk.Keywords: mechanical biological waste treatment, flushing, leaching columns, bioreactor landfill, leachat

    Simulation of retrofitted unreinforced concrete masonry unit walls under blast loading

    Full text link
    This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts

    Rapid state purification protocols for a Cooper pair box

    Get PDF
    We propose techniques for implementing two different rapid state purification schemes, within the constraints present in a superconducting charge qubit system. Both schemes use a continuous measurement of charge (z) measurements, and seek to minimize the time required to purify the conditional state. Our methods are designed to make the purification process relatively insensitive to rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67, 030301(R) (2003)] uses the measurement results to control bias (z) pulses so as to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90 (2006)] uses a simple feedback protocol which tightly rotates the Bloch vector about an axis almost parallel with the measurement axis. We compare the performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review

    Spectroscopy on two coupled flux qubits

    Full text link
    We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a σ1zσ2z\sigma_1^z\sigma_2^z interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the magnetic field applied we observe the coupling of the qubits. The coupling strength agrees well with calculations of the mutual inductance
    • …
    corecore