2 research outputs found

    On the Origin of AMS “Cooking Organic Aerosol” at a Rural Site

    Get PDF
    A number of field observations employing aerosol mass spectrometers (AMS) have demonstrated that organic matter rich in monocarboxylic acids and aliphatic carbonyls originating from cooking activities (the COA factor) contributes significantly to ambient organic matter (OM) in urban environments. Little is known about the contribution and nature of COA in rural localities. We studied the correlation of COA with chemical tracers at a rural site in the Po Valley, Italy. Our statistical approach, based on positive matrix factorization (PMF) shows that the COA factor was clearly linked to local emissions of chloride and methanesulfonic acid (MSA), chemical tracers not associated with cooking emissions, or with combustion sources. While the association with Cl is not understood at this stage, the emission of reduced sulfur compounds, aliphatic carbonyls and monocarboxylic acids is consistent with several agricultural practices (e.g., manure storage) and waste disposal systems (e.g., landfills) which characterize the suburban and rural areas of the Po Valley and of other many populated environments. It is concluded that the nature and origins of the AMS COA factor measured at a rural site are complex and include far more than the emissions from food cooking

    Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales

    No full text
    The European Aerosol Cloud Climate and Air Quality Interactions project EUCAARI is an EU Research Framework 6 integrated project focusing on understanding the interactions of climate and air pollution. EUCAARI works in an integrative and multidisciplinary way from nano- to global scale. EUCAARI brings together several leading European research groups, state-of-the-art infrastructure and some key scientists from third countries to investigate the role of aerosol on climate and air quality. Altogether 48 partners from 25 countries are participating in EUCAARI. During the first 16 months EUCAARI has built operational systems, e.g. established pan-European measurement network for Lagrangian studies and four stations in developing countries. Also an improved understanding of nanoscale processes (like nucleation) has been implemented in global models. Here we present the research methods, organisation, operations and first results of EUCAARI.</p
    corecore