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 43 
 44 
Abstract 45 
 46 
A number of field observations employing aerosol mass spectrometers (AMS) have 47 

demonstrated that organic matter rich in monocarboxylic acids and aliphatic carbonyls 48 

originating from cooking activities (the COA factor)  contributes significantly to ambient 49 

Organic Matter (OM) in urban environments. Little is known about the contribution and 50 

nature of COA in rural localities. We studied the correlation of COA with chemical tracers 51 

at a rural site in the Po Valley, Italy. Our statistical approach, based on Positive Matrix 52 

Factorization (PMF) shows that the COA factor was clearly linked to local emissions of 53 

chloride and methane sulphonic acid (MSA), chemical tracers not associated with cooking 54 

emissions, or with combustion sources. While the association with Cl is not understood at 55 

this stage, the emission of reduced sulphur compounds, aliphatic carbonyls and 56 

monocarboxylic acids is consistent with several agricultural practices (e.g., manure 57 

storage) and waste disposal systems (e.g., landfills) which characterize the sub-urban and 58 

rural areas of the Po Valley and of other many populated environments. It is concluded 59 

that the nature and origins of the AMS COA factor measured at a rural site are complex 60 

and include far more than the emissions from food cooking.   61 

 62 

KEY WORDS:  Aerosol mass spectrometer; cooking organic aerosol; COA; ATOFMS 63 

 64 
 65 
 66 
 67 

68 
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1.  INTRODUCTION 69 
 70 
Urban air quality provides one of the main drivers for the study of atmospheric science, 71 

especially due to growing urbanization. Although considerable progress in improving air 72 

quality has been made, it is imperative to better understand the source attribution of 73 

particles and health effects in the urban atmosphere1. Among the constituents, organic 74 

aerosol (OA) accounts for a large fraction of urban particulate matter2. Primary OA (POA) 75 

is directly emitted from fossil fuel combustion, biomass burning, and other sources, but the 76 

atmospheric evolution of POA after emission remains poorly characterized3-5. Whilst road 77 

traffic is often a major contributor to aerosol in urban areas next to major roads, OA in 78 

urban background areas is not easily associated with a specific source. Few studies have 79 

sought to characterise the sources of OA in rural areas, remote from major sources.  80 

 81 

In recent years Mass Spectrometry of Atmospheric Aerosol (MSAA) has become one of 82 

the fastest growing area of aerosol research6. Such techniques have greatly enhanced our 83 

capacity of observing the atmospheric processes responsible for the formation and 84 

evolution of airborne particles. In this regard, the Aerodyne Aerosol Mass Spectrometer 85 

(AMS) is able not only to measure the OA concentration and size distribution but also to 86 

provide its mass spectrum7. Analysis of AMS data collected at a large number of sites has 87 

revealed that the oxidised OA component  (OOA) tends to dominate everywhere, including 88 

some heavily urbanized regions2,8.  89 

 90 

Many AMS studies have focused on the application of factor analysis to the organic mass 91 

fraction in an attempt to deconvolve it into descriptive sub-components, namely a 92 

hydrocarbon-like organic aerosol (HOA) factor, an oxygenated organic aerosol (OOA) 93 

factor, and a semi-volatile factor (SV-OOA)4,9.  Such assignments are based primarily 94 

upon the main mass spectral components and the diurnal profile.  In some cases, 95 
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supporting evidence from chamber experiments is available. Recently, a previously 96 

reported AMS spectrum10,11 has been firmly associated with primary emissions from 97 

cooking activities. Such emissions have been claimed to  account for up to half of the total 98 

primary urban OA at sites in Europe12-14, Asia15 and America16 . However, there is a 99 

possibility for a factor to include a combination of factors associated with different 100 

sources11,17, and some recent studies report a COA factor lacking the diurnal profile 101 

expected from cooking activities, although possible explanations have been given13,18. 102 

Other studies have also expressed the view that it is most reasonable to characterize the 103 

COA component as  "cooking influenced” but not purely from cooking sources19. In a 104 

comparison of source apportionment by AMS-PMF with a Chemical Mass Balance model, 105 

the AMS estimate of COA for a site in London exceeded the CMB-derived concentration of 106 

cooking aerosol by a factor of ca 1.620. 107 

 108 

Taken together, evidence for source attribution of the AMS COA factor is currently 109 

incomplete and most importantly not well supported by other measurement techniques. 110 

This lack of knowledge needs to be filled, and the goal of this paper is to use results of a 111 

source apportionment study using six state-of-the-art spectrometric techniques deployed 112 

at a rural site in the Po Valley (Italy) in 2009 to investigate the nature of the AMS COA 113 

factor. Previous work21 provides a comprehensive picture of the nature of organic and 114 

inorganic aerosols and aerosol precursors at a European rural site with an unprecedented 115 

level of detail. Figure S1 shows an example of the high time resolution particle mass 116 

spectrometry instruments deployed. In this study Positive Matrix Factorization (PMF) has 117 

been applied to all the high time resolution data in order to better elucidate aerosol 118 

sources not clearly identified when analyzing results from individual aerosol techniques on 119 

their own. Particular attention is given to the AMS COA factor, but a complete overview of 120 

the aerosol sources apportioned is also presented and discussed. 121 
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 122 
 123 
2.  EXPERIMENTAL  124 
 125 
2.1  Study Site 126 
 127 
The Po Valley is located in Northern Italy between two mountain ranges, the Alps in the 128 

north and west and the Apennines in the south. The Po Valley has 20 million inhabitants 129 

spread over an area of 48,000 km2 (Fig S2). In the present study we used the EMEP 130 

Station of San Pietro Capofiume (SPC, 44°23′N 11°22′E, 11 m a.s.l.), a rural background 131 

site (distance from major pollution sources: 10 – 50 km22). The measurements were 132 

conducted from 26 June to 15 July 2009.  133 

 134 
 135 
2.2  Aerosol Mass Spectrometry Techniques 136 
 137 
Four on-line aerosol spectrometers were used: the TSI Aerosol Time-Of-Flight Mass 138 

Spectrometer (ATOFMS), the Aerodyne High-Resolution Time-of-Flight Aerosol Mass 139 

Spectrometer (HR-TOF-AMS) and Soot Particle Aerosol Mass Spectrometer (SP-AMS), 140 

and finally a Thermal Desorption Aerosol Gas Chromatograph AMS (TAG-AMS). Twelve-141 

hour resolution proton nuclear magnetic resonance (H-NMR) spectra were also obtained 142 

by off-line analysis. Finally, information on gas-phase precursors of secondary aerosols 143 

was acquired using Chemical Ionization Mass Spectrometry (CIMS). A set of other 144 

measurements are described in detail elsewhere21. Overall, the state-of-the-art 145 

instruments used for this analysis measure different species with different accuracy and 146 

precision, as discussed in great detail in other publications23-25.  147 

 148 
 149 
2.3  Factor Analysis 150 
 151 
Factor analysis involves a wide set of multivariate statistical techniques that have been 152 

extensively used in atmospheric science. Its aim in this field is to apportion aerosol 153 

sources on the basis of the internal correlations of observational data collected at a 154 
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measurement point, called the “receptor site”. Receptor modeling by factor analysis does 155 

not need any detailed a prior knowledge of source profiles and it is therefore very useful 156 

for determination of aerosol fractions of secondary origin. “Positive Matrix Factorization” 157 

(PMF)26,27 has been used extensively for source apportionment of ambient particulate 158 

matter (PM), and in particular is so far the most widespread tool for AMS spectral data 159 

analysis28 .In this study the EPA open-source software EPA-PMF v3.0 was used for PMF 160 

analysis. PMF was applied on the hourly data obtained by the analytical techniques 161 

described above and also by the previous PMF analysis on spectroscopic data reported 162 

elsewhere21.  163 

 164 

The criteria adopted in this study for input data treatment, including the uncertainty matrix, 165 

and for the evaluation of the PMF solutions are discussed extensively in the 166 

supplementary material. 167 

 168 

3.  RESULTS 169 

PMF analysis was performed for one to ten factors, and it was found that the solutions with 170 

factor numbers greater than five provided no new meaningful information for both 171 

datasets. Rotational constraint was explored with Fpeak. The solutions ultimately selected 172 

was based on an Fpeak value of zero. Additional factors resulted in a splitting of the 173 

existing factors (mainly splitting of secondary organic and inorganic components (Figures 174 

S5 and S6; Table S2 and S3). Table S4 shows there is no clear improvement with the six 175 

factor solutions from either of the two datasets. A full list of variables is found in Table S1. 176 

The figures in brackets after the PMF input variable represent the percent contribution of 177 

that atmospheric variable within the whole five factor solution (% of species). A description 178 

of the strong agreement between the solutions from the two datasets is presented at the 179 
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end of this section. More details on the PMF diagnostics are presented in supplementary 180 

material.  181 

 182 

 183 

3.1  Dataset 1 : Results from the Full Campaign (“ALL”) 184 
 185 
Five factors were found very well describing the long time series dataset (16 days). This 186 

dataset included the first week of the study when the anticyclonic conditions favoured 187 

transport of aerosol at the regional scale and the recirculation of pollutants in the Po 188 

basin21. Figure 1 and table 1 show all the PMF factor profiles of this solution, whereas the 189 

temporal trends and the diurnal profiles can be seen in Figures 2 and S9a, respectively.  190 

The individual factors are as follows:  191 

• Oxidised Organic Aerosol from photooxidation processes "Photox OOA" (30% of the 192 

total, Figure 1a). It represents oxidised organic aerosols (accounting for a substantial 193 

percentage of AMS_ LV-OOA MO 48% and AMS_LV-OOA LO 49%), AMS_sulphate 194 

(48%), Ozone (83%) and CIMS_MA (84%). This is associated with photochemically 195 

aged secondary aerosols, and the temporal trends (Figure 2, S9a) show this aerosol 196 

component occurring mainly during daytime and during the first week of the study.  197 

• Nitrate "NIT-Regional" (18%, Figure 1b). This factor is strongly associated with 198 

AMS_Nitrate (79%) and ATOFMS_NIT-Regional (32%). There is an important 199 

component of AMS_Cl (38%) and AMS_SV-OOA (27%) associated with it. This factor 200 

is associated with nitrate  containing aerosol of regional origin29 , and related to high 201 

RH (Figure 2), with time trends modulated by the diurnal variations of temperature and 202 

relative humidity which regulate the concentration of semivolatile compounds in the 203 

aerosol (ammonium nitrate and chloride, SV-OOA). 204 

• Sulphate "SUL-Regional" (23%, Figure 1c). This aerosol source is mainly composed of 205 

sulphate (ATOFMS_SUL-Reg 90%), ATOFMS_EC-Reg (72%), and AMS_OOA-MO 206 
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(32%). This aerosol source accounted for 35% of explained variation during the first 207 

week of the study (stagnant air), but only 3% during the second week (Figure S9a). 208 

Part of this component is thought to be the aerosol core from the evaporating regional 209 

nitrate during daytime21,29. This factor seems to be linked to the transport of sulphate 210 

and BC during the days of anticyclonic conditions.  211 

• "NO" (12%, Figure 1d). This represents the smallest aerosol source contribution as 212 

expected given the rural location of San Pietro Capofiume. The factor is well described 213 

primarily by NO (90%), followed by minor contributions from AMS_HOA (23%) and 214 

NO2 (25%). BC is only partially described by this factor (6%). Although the diurnal 215 

profile (Figure 2) shows a main morning spike during the urban rush hour (7am), 216 

processes other than traffic and certainly including photolysis of NO2 and of HONO 217 

most probably contributed to NO at the site. Other studies21,30,31 have already 218 

demonstrated the presence of a traffic-influenced component at SPC station with 219 

contributions ranging between 14-24% of total OA. This non-negligible contribution 220 

and its diurnal trend could be explained both by the proximity of main transportation 221 

routes and by the accumulation of the primary emissions overnight because of the 222 

reduced atmospheric mixing and dispersion. However the NO apportioned in this study 223 

could be also formed from photochemical activity (photolysis of NO2 in the first hours 224 

after the sunrise) and so we prefer to label this factor simply as “NO”, the most 225 

represented species, without assigning a specific source. 226 

• "Cooking" Organic Aerosol "COA" (17%, Figure 1e). This factor accounts for a high 227 

proportion of AMS COA (77%) and ATOFMS OC-SUL-NIT (77%). Other interesting 228 

variables describing this factor includes CIMS MSA (41% of the total), AMS Cl (35%) 229 

and NO2 (31%). The temporal trends show a major occurrence during the second 230 

week (24%) rather than the first regional pollution week (14%). The diurnal profile 231 

shows a minor spike during evening time (7-9pm), followed by sustained 232 
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concentrations overnight. There is a lack of the midday peak seen associated with 233 

COA factors in many studies13,18. 234 

 235 

The analysis of the correlation of the five factor concentrations with local wind direction 236 

(Figure S10a) shows that the first three factors are associated with sustained winds from 237 

either east (OOA), west (NIT-regional) or south-west (SUL-regional) directions, while the 238 

COA factor is most concentrated in calm conditions. Therefore, the COA is more 239 

influenced by local sources compared to the first three factors which are mainly 240 

transported to the site. The NO factor shows an intermediate behaviour, with a component 241 

from the west (possibly NOx transport) and another local (possibly soil emissions32). 242 

 243 
3.2  Dataset 2: Three Measurement Days Including SP-AMS Data  (“HIGH” 244 

Resolution) 245 

 246 

The factors of the dataset_2 (HIGH) PMF solution can be seen in Table 1 and Figure 3. In 247 

the last days of the campaign, which were covered by the measurements described in this 248 

section, the weather conditions were unfavourable for pollutant recirculation and the 249 

aerosol concentrations were fairly low in day-time when the planetary boundary layer was 250 

fully developed. Conversely, the concentrations at night-time and in the early morning 251 

continued to be sustained by local sources in the Po Valley21. The analysis of this 252 

campaign period is therefore particularly useful for the source apportionment of the aerosol 253 

components originating from emissions in the Po Valley, such as cooking aerosols, 254 

because the interference from the background particles is smaller with respect to the first 255 

part of the campaign21. The diurnal profiles can be seen in Figure 2 and the temporal 256 

trends in Figure S9b. Three of the five factors presented previously (Section 3.1, ALL) 257 

were also found in this second solution, including: 258 
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• Oxygenated Organic Aerosol "Photox OOA" (38%, Figure 3a). This described 259 

Secondary Organic aged aerosols accounting for a high percentage of AMS LV-OOA 260 

MO (81%), SP-AMS “SV-OOA Day” (89%), ozone (83%) and sulphate from both HR-261 

AMS (68%) and SP-AMS (67%) instruments. 262 

• Nitrate regional "NIT-Regional" (17%). A strong nitrate signal from all the on-line 263 

spectrometers including HR-AMS (72%), SP-AMS (45%) and ATOFMS (NIT-Reg 264 

71%) can be seen (Figures S9b and 2). Additionally, an hydrocarbon like contribution 265 

of HOA (21%) and BC (20%) is notable.  266 

• ”NO” (17%). This shows a strong NO signature (93%) followed by HOA (22%) and BC 267 

(11%) (Figure 3c). The diurnal profile seen in Figures 2 and S9b shows a morning 268 

peak likely to be associated with traffic and/or photolysis. 269 

 270 

Unlike the “ALL” solution, in this 3-day dataset_2 (AMS, ATOFMS, SP, CIMS, gas, 33 271 

variables, last 3 days of the field study, dataset_2, HIGH) a factor related to sulphate of 272 

regional origin was not identified. This is very likely due to the fact that during the second 273 

week of the field study there was little contribution of regional pollution, so the solution was 274 

not able to extract the SUL-Reg factor, mainly seen during the first week (Figure S9a). By 275 

contrast, during nighttime the relatively higher concentration of nitrate allowed identification 276 

of the NIT-Reg. factor. During daytime the SUL-Reg., if present, is likely to be incorporated 277 

in  the regional OOA factor.   278 

 279 

However, the second solution with more variables (33 in total) was able to provide a better 280 

description of the COA factor, because the statistical correlations of AMS COA 281 

concentrations with the other variables are much more clear in the HIGH dataset than in 282 

the ALL one (Table S6). The factor analysis of the HIGH set of variables actually provided 283 

two different aerosol sources associated with the AMS “cooking aerosols” and specifically: 284 
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• "Cooking" organic aerosol "COA-MSA-Cl" (seen in Figure 3d). This factor presents a 285 

strong AMS COA signal (54%), with CIMS_MSA (36%) and a strong inorganic AMS Cl 286 

signature (70%). A strong semi-volatile component is also present (AMS SV-OOA and 287 

SP-AMS “SV-OOA Night”, both 58%). Additionally, the factor ATOFMS OC-SUL-NIT is 288 

also associated with this factor (32%). In summary, this COA factor is associated with 289 

MSA, chloride and semi-volatile OA components.   290 

• "Cooking" organic aerosol "COA-MSA-HOA" (seen in Figure 3e). This factor shares 291 

the part of the AMS_COA signal (46%) not identified by the previous factor (54%) and 292 

a strong association with CIMS MSA (37%). However, this factor is more associated 293 

with AMS HOA (38%) SP-AMS HOA (42%) and contains almost no semi-volatile 294 

component. Interestingly, this factor is associated with nitrate of local origin (ATOFMS 295 

NIT-Local, 42%). In support of this, it accounts for the highest percentage of NO2 296 

(33%) of all factors. In summary, this second "COA" factor is associated with 297 

anthropogenic HOA and somehow related to nitrate locally formed, organic nitrate and 298 

nitrogenous gaseous29. This fingerprint could be characteristic of urban sources near 299 

to the site. 300 

 301 

 302 

 303 

3.3  Comparison Among the two PMF Solutions and External Correlations  304 

 Support 305 

The two PMF solution (ALL and HIGH) provided three common factors (OOA, NIT-Reg 306 

and Traffic). When correlation of the overlapping temporal trends of the last three days are 307 

examined, Table S4 shows a very good agreement between the two PMF solutions: OOA 308 

(34-38%, R2=0.95), Nitrate regional (14-17%, R2=0.94) and NO (14-17%, R2=0.85). 309 

Sulphate Regional cannot be temporally compared, although the apportionment 310 
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contributions is similar for both solutions (0-3%). The "Cooking" factor solution for the 311 

dataset_ALL is found to contribute less (25%) than the sum of the two "cooking" aerosol 312 

factors of the dataset _HIGH (38%). However, it is important to note that the temporal 313 

correlation between "COA" from dataset_ALL and the sum of COAs from dataset_HIGH 314 

("COA-MSA-Cl" and "COA-MSA-HOA" together) is very high (R2=0.85). 315 

 316 

The factors presented are strongly supported by correlations with external measurements  317 

presented elsewhere21 .Table S5 shows that factor Photox. OOA correlates very well with 318 

NMR_PMF_F4 (Aged humic-like substances, R2=0.90), whereas factor SUL-Reg. 319 

correlates well with NMR_PMF_F3 (organic sulphate and less aged humic-like 320 

substances, R2=0.57). Furthermore, whilst COA-MSA-Cl correlates only with 321 

NMR_PMF_F1 (aliphatic amines and unspeciated aliphatic compounds, R2=0.77), factor 322 

COA-MSA-HOA correlates only with NMR_PMF_F2 (aliphatic alkanoic acids and oxo-323 

acids, R2=0.95). These are robust external correlations which strongly support our PMF 324 

solutions.  Correlations reported in Table S4 are much stronger (R2=0.7-1.0) than those 325 

previously reported (R2=0.3-0.6)21 because the chemical profiles of the PMF solutions 326 

herein presented are less dependent upon specific markers, but rather show a 327 

combination of markers that better describe an organic aerosol source. 328 

 329 
 330 
4.  DISCUSSION 331 
 332 
4.1  Major Constituents  333 
 334 
The analysis of the correlations between the “regional” aerosol components (i.e., the 335 

components expected to exhibit an extended source footprint) suggests that the OOA 336 

atmospheric evolution over north Italy is completely distinct from that of nitrate of regional 337 

origin. Factor “Photox. OOA” was found mainly associated with oxidised organic aerosols 338 

(48-88%) and sulphate (48-68%). This is in line with previous studies33 who reported aged 339 
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OOA detected above the Po Valley column to be secondary in nature and highly oxidized 340 

in the regional aerosol, with much higher amounts of sulphate and organics relative to 341 

nitrate. By contrast, NIT-Reg. is found to account for the majority of nitrate aerosol 342 

detected (AMS_Nit 72-79%), of regional nature (ATOFMS NIT-Reg 32-71%). The organic 343 

component in this factor is found to be of primary origin: AMS_HOA (21-45%). The 344 

association of NIT-Reg. with HOA may suggest a larger size mode of nitrate during the 345 

night acting as a coagulation sink for fresher finer local aerosols. Alternatively, the HOA 346 

may in part be subjected to transport across the Po Valley basin together with nitrate. This 347 

factor is associated with a specific mass spectrum and a characteristic temporal dynamic 348 

already reported in London29, Wales34 and Barcelona35. The LRT-NIT particle type is 349 

volatile, going into the gas phase during the day and leaving  a non-volatile internally 350 

mixed core mostly composed of sulphate, elemental and organic carbon. The SUL-Reg is 351 

mainly composed of EC-Sulphate (90%), BC (42%) and sulphate (27%). During this study 352 

we find local, less aged nitrate of finer size mode of local origin (ATOFMS_NIT-local) 353 

associated with COA-MSA-HOA.  354 

 355 
 356 
HOA and BC are usually related to fresh traffic emissions in many AMS studies. This work 357 

shows that traffic makes only a small contribution to BC (11%) and a modest one to HOA 358 

(23%). By contrast, the majority of BC is related to the core of the regional nitrate, being 359 

internally mixed with sulphate and BC (42% of total BC). As a result, it is important to 360 

stress that the HOA and BC is mainly seen during nighttime and mainly associated with 361 

nitrate.  362 

 363 
 364 
 365 
 366 
4.2  The "Cooking" Aerosol Factor(s) 367 
 368 
 369 
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The mass spectrum of the AMS COA factor obtained from San Pietro Capofiume was 370 

converted in m/z unit mass resolution and compared with other factors in the literature. All 371 

factors were compared at unit mass resolution. The COA factor did not correlate (R2<0.1) 372 

with any of the HOA, SV-OOA or LV-OOA in the literature. A good correlation (R2) was 373 

found with AMS COA reported in seven previous studies: 0.84 (laboratory studies11); 0.74 374 

and 0.83 (London12); 0.75 (Manchester12); 0.80 (Paris14,36); 0.75 (Zurich10); 0.85 (Cork18). 375 

Therefore, the same name "COA" was kept for this study. 376 

 377 

The composition of the aerosol and of the air masses associated with the AMS COA 378 

factors are key indicators of its origins. A first, unexpected finding is that the PMF analyses 379 

from both datasets (ALL and HIGH) show the association of AMS COA with secondary 380 

organic aerosol components (CIMS MSA and ATOFMS OC-SUL-NIT) rather than with 381 

markers of primary combustion (or thermal) processes. More specifically, the analysis of 382 

the HIGH dataset decomposes the “COA” factor into two, with one (COA-MSA-HOA) 383 

retaining a partial fingerprint for primary sources (HOA, BC, NOx) together with that of 384 

secondary components (nitrate, MSA) while the other factor (COA-MSA-Cl) shows very 385 

small correlations with the primary tracers. Fig. S11 shows the main differences among the 386 

two COA PMF factors. The low correlation of COA with tracers of urban pollution in this 387 

last factor was unexpected because cooking aerosols should be transported in urban 388 

plumes to the countryside along with the products of traffic emissions (BC, NOx, HOA). It is 389 

important to stress that very little is known on the transformation of COA in the 390 

atmosphere37. Preliminary findings of  meat cooking aerosol ageing show an increase  of 391 

the AMS O:C ratio from 0.1 up to 0.338. By looking at the prevalent wind directions 392 

associated with the two COA factors in the HIGH datasets, the COA-MSA-HOA shows a 393 

transport component from the west, while the COA-MSA-Cl has a more local footprint. 394 

Therefore, it is very unlikely that the COA-MSA-Cl originated from cooking activities in 395 
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urban areas. The local sources to be indicated could be cooking in rural houses and small 396 

towns in the vicinity of SPC, but this does not explain the low correlation with the traffic 397 

markers (as people who live there still use cars). Most importantly, the source profile 398 

emerging from COA-MSA-Cl is inconsistent with the known composition of cooking 399 

aerosol, in which particles are mainly organic in nature with inorganic ions being present 400 

only in trace amounts37, while here the aerosol mass AMS Cl/ AMS COA ratio is 1.63. 401 

These findings indicate that either the published emission composition for cooking 402 

emissions does not apply to this environment, or cooking is not a major source for the 403 

organic aerosol included in the COA-MSA-Cl factor. 404 

 405 

Explaining the correlation between COA and aerosol chloride is challenging. Aerosol 406 

chloride in this study is mainly non-sea salt chloride, which may originate from various 407 

anthropogenic sources including industry, combustion and incinerators(39,45). There are no 408 

industrial plants around SPC. Incinerators emit hydrochloric acid which comes from the 409 

combustion of plastic material(39,45). However, the single particle mass spectra associated 410 

with this factor (ATOFMS_OC-NIT-SUL) does not have metals previously identified with 411 

Cl-containing aerosols emitted by waste incinerators39. Also the SP-AMS did not observe 412 

any mass fragments from metals such as lead which typically characterize the emissions 413 

of incinerators (Dr. J. Allan, personal communication).  414 

 415 

Finally, the source profile of COA-MSA-Cl indicates that the same source is responsible for 416 

the emission of reduced sulfur species (precursors of gas-phase MSA measured by CIMS) 417 

which is inconsistent with the hypothesis of a high-temperature combustion process such 418 

as in an incinerator. This is because in thermal oxidizers such as industrial incinerators 419 

chemically reduced pollutants are generally destroyed via combustion forming more 420 

oxidised species such as CO2, SO2 and H2O. On the contrary, the production of reduced 421 
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sulfur species points to thermal processes occurring at low temperature (including some 422 

cooking practices) or to emissions at ambient temperature40. Dimethylsulfide emissions 423 

from marine biota are believed to be largely responsible for global MSA production41; 424 

however, in this study gas-phase MSA was not associated with marine air masses. On the 425 

contrary the MSA concentrations reach a maximum at nighttime when the circulation is 426 

mainly from the inland to the sea21. A recent review on cooking aerosol tracers actually 427 

does not mention sulphur compounds as cooking tracers37. However, it is worth 428 

mentioning that roasting of coffee beans may be a source of reduced sulphur 429 

compounds42 and also meat cooking can produce several thioethers43. However, cooking 430 

is only one of the possible anthropogenic sources of sulfur compounds. Urban sources of 431 

DMS include aerobic composting of food wastes40,44-47. More generally, volatile organic 432 

sulphur compounds can readily form from the aerobic and anaerobic degradation of 433 

organic matter, including solid wastes, wastewater, manure and livestock excreta and 434 

feed44-48. If we quantify such sources using co-emitted compounds such as ammonia, then 435 

emissions in the Po Valley are dominated by the agricultural practices and animal 436 

husbandry activities. A prevalent source of MSA precursors in rural areas, with emissions 437 

from manure management, livestock and agricultural land is consistent with the 438 

appearance of the COA-MSA-Cl factor as a local source at SPC unrelated to urban 439 

sources. The origin of organic particulate matter associated with the aerobic/anaerobic 440 

organic matter decomposition in agricultural land is poorly documented. Broadly, air 441 

pollutants emitted from the agricultural sector are mainly methane (CH4) and other VOCs, 442 

nitrous oxide (N2O) and ammonia (NH3). Agriculture is also a main source of PM, both 443 

primary and secondary in origin originating from livestock production,  application of 444 

fertilizers and pesticides, land preparation, harvesting and field burning of agricultural 445 

waste46-48. It is know that some husbandry activities (poultry) are strong point sources of 446 

PM10 and PM2.5, but this aerosol source has never been related to the AMS COA prior to  447 
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this study. By contrast, the emissions of VOCs from livestock and manure management 448 

have been characterized in some detail and often associated with the production of 449 

reduced sulfur species50-51. Such VOCs comprise low-molecular weight organic acids, but 450 

also C6-C10 aliphatic aldehydes and monocarboxylic acids. These chemical compounds 451 

are analogous to the organic compounds believed to contribute to the AMS COA but 452 

exhibit too low a molecular weight to exist in the particulate phase. Therefore, the 453 

production of COA from these VOCs is possible only via a gas-phase oxidation step. C>8 454 

n-alkanals in particular can form SOA under low NOx conditions52, while unsaturated 455 

alkanals53 are good SOA precursors also in NOx-rich environments49. According to this 456 

hypothesis, the COA in the rural Po Valley may be contributed from secondary organic 457 

compounds in the same manner that MSA is produced by the oxidation of reduced sulfur 458 

species. It is worthy of note that MSA and COA concentrations peak at nighttime, when 459 

OH concentrations are near zero while the nitrate radical NO3 becomes the major 460 

oxidant52-54. Unlike OH, the concentrations of NO3 depend on the availability of NOx, which 461 

can explain why the COA-MSA factors show a component of westerly transport, i.e., from 462 

the more polluted sector of the valley. It can also explain the correlation of COA with urban 463 

tracers (including NOx) in the factor COA-MSA-HOA. The correlation of COA with aerosol 464 

chloride cannot be fully explained by this hypothesis. Possible point sources for 465 

hydrochloric acid, reduced sulfur species and VOCs from organic matter degradation are 466 

landfills, and there are actually two at ten-twenty km west of SPC.  467 

 468 

In conclusion, the origin of factor COA-MSA-Cl (21% of total aerosol, 54% of AMS COA) 469 

can be explained by hypothesizing emissions from agricultural/husbandry activities with a 470 

potential additional contribution from waste disposal at urban sites. A second AMS COA 471 

source (COA-MSA-HOA, 17% of the total aerosol, 46% of the remaining AMS COA) was 472 
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also linked with secondary components (nitrate, MSA), although retaining a partial 473 

fingerprint for primary traffic sources (HOA, BC, NOx). 474 

 475 

Quantification of such sources is challenging and calls for more research. However, the 476 

results of this study suggests that the current estimates of OA sources from organic matter 477 

degradation processes in agricultural and waste systems in populated areas may be 478 

substantially underestimated. The COA factor as determined by the AMS includes far 479 

more sources and processes than solely primary emissions from cooking activities.  480 
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Table 1. Percentages of factors over the same time interval (9-12/07/2009) for the  772 
dataset_1 (all field study) and dataset_2 ( high, only second part)  773 
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Figure 3. PMF factors of the dataset_2 for the second part of the field study (HIGH) 933 
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