2,665 research outputs found

    Technical innovation changes standard radiographic protocols in veterinary medicine: is it necessary to obtain two dorsoproximal-palmarodistal oblique views of the equine foot when using computerised radiography systems?

    Get PDF
    Since the 1950s, veterinary practitioners have included two separate dorsoproximal–palmarodistal oblique (DPr–PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr–PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1–3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr–PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure

    Directional genetic differentiation and asymmetric migration

    Get PDF
    Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. Since information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this paper. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.Comment: 25 pages, 8 (+3) figures, 1 tabl

    Stochastic delocalization of finite populations

    Full text link
    Heterogeneities in environmental conditions often induce corresponding heterogeneities in the distribution of species. In the extreme case of a localized patch of increased growth rates, reproducing populations can become strongly concentrated at the patch despite the entropic tendency for population to distribute evenly. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. Here, we study the delocalization of a finite population in the presence of number fluctuations. We find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. The analytical approach allows us to map out a phase diagram of the order parameter as a function of the two driving parameters, inverse population size and wind speed. Our results may be used to extend the analysis of delocalization transitions to different settings, such as the viral quasi-species scenario

    Intercomparison of standard resolution and high resolution TOVS soundings with radiosonde, lidar, and surface temperature/humidity data

    Get PDF
    One objective of the FIRE Cirrus IFO is to characterize relationships between cloud properties inferred from satellite observations at various scales to those obtained directly or inferred from very high resolution measurements. Satellite derived NOAA-9 high and standard resolution Tiros Operational Vertical Sounder (TOVS) soundings are compared with directly measured lidar, surface temperature, humidity, and vertical radiosonde profiles associated with the Ft. McCoy site. The results of this intercomparison should be useful in planning future cloud experiments

    Improved detection of small atom numbers through image processing

    Get PDF
    We demonstrate improved detection of small trapped atomic ensembles through advanced post-processing and optimal analysis of absorption images. A fringe removal algorithm reduces imaging noise to the fundamental photon-shot-noise level and proves beneficial even in the absence of fringes. A maximum-likelihood estimator is then derived for optimal atom-number estimation and is applied to real experimental data to measure the population differences and intrinsic atom shot-noise between spatially separated ensembles each comprising between 10 and 2000 atoms. The combined techniques improve our signal-to-noise by a factor of 3, to a minimum resolvable population difference of 17 atoms, close to our ultimate detection limit.Comment: 4 pages, 3 figure

    Temporal and dimensional effects in evolutionary graph theory

    Full text link
    The spread in time of a mutation through a population is studied analytically and computationally in fully-connected networks and on spatial lattices. The time, t_*, for a favourable mutation to dominate scales with population size N as N^{(D+1)/D} in D-dimensional hypercubic lattices and as N ln N in fully-connected graphs. It is shown that the surface of the interface between mutants and non-mutants is crucial in predicting the dynamics of the system. Network topology has a significant effect on the equilibrium fitness of a simple population model incorporating multiple mutations and sexual reproduction. Includes supplementary information.Comment: 6 pages, 4 figures Replaced after final round of peer revie

    An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

    Full text link
    Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and Future

    Absolute Intensities of the Discrete and Continuous Absorption Bands of Oxygen Gas at 1.26 and 1.065 µ and the Radiative Lifetime of the 1Δg State of Oxygen

    Get PDF
    Laboratory measurements have been made of the absolute intensities of the discrete-line absorption band at 1.26 µ, and of the continuous bands at 1.26 and 1.065 µ in oxygen gas at pressures up to 4.3 atm. It has been shown that discrete and continuous absorptions are quite independent features, the one being a measure of the intrinsic transition probability in isolated molecules, the other of its enhancement in collision complexes. In the former the lines show significant pressure broadening, but the integral molecular absorption coefficients are constant; in the latter they are proportional to pressure and continuous absorption dominates in the 1.26-µ region at about ½ atm oxygen pressure.The radiative half-life of isolated 1Δg oxygen molecules is estimated to be 45 min, and the effect of gas pressure on the rate of decay has been predicted

    Spatially Resolved Excitation of Rydberg Atoms and Surface Effects on an Atom Chip

    Get PDF
    We demonstrate spatially resolved, coherent excitation of Rydberg atoms on an atom chip. Electromagnetically induced transparency (EIT) is used to investigate the properties of the Rydberg atoms near the gold coated chip surface. We measure distance dependent shifts (~10 MHz) of the Rydberg energy levels caused by a spatially inhomogeneous electric field. The measured field strength and distance dependence is in agreement with a simple model for the electric field produced by a localized patch of Rb adsorbates deposited on the chip surface during experiments. The EIT resonances remain narrow (< 4 MHz) and the observed widths are independent of atom-surface distance down to ~20 \mum, indicating relatively long lifetime of the Rydberg states. Our results open the way to studies of dipolar physics, collective excitations, quantum metrology and quantum information processing involving interacting Rydberg excited atoms on atom chips
    • …
    corecore