63 research outputs found

    Fax +41 61 306 12 34 E-Mail [email protected]

    Get PDF
    The sex of an individual is determined by the fate of the gonad. This organ arises from two different structures: the coelomic epithelium and a mesenchymal part that forms from the mesonephros. The early embryonic gonad can differentiate into a testis or an ovary, thus suggesting that at an early stage the gonad is bipotential. Testis formation requires differentiation of Sertoli cells, which will form the supporting cell lineage of the seminiferous tubules. These cells synthesize Anti-Mullerian Hormone (AMH), which induces regression of the Mullerian duct, thus counteracting the development of female internal genitalia. Moreover, Sertoli cells favor recruitment of other somatic cell lineages migrating from the mesonephros that are also crucial for testis development to occur. The interstitial area of the testis contains the steroidogenic cells (Leydig cells), which have the function of producing androgens. These hormones stimulate the differentiation of internal and external genitalia of the male [for a review see Gonad differentiation depends on the paternal transmission of the sex chromosome. Thus, an XY embryo develops as a male, whereas an XX embryo becomes female. Most of the genes involved in this developmental pathway have been discovered from genetic studies of human XY sex-reversal. At a molecular level, the Y chromosome encodes a testis determining factor, SRY [Sinclair et al., Key Words Abstract In mammals, the sex of the embryo is determined during development by its commitment either to the male or female genetic program regulating testicular or ovarian organogenesis. Major steps towards unraveling sex determination in mammals are achieved by the identification of key genes involved in human pathologies and the application of mouse genetics to analyze their function. While the expression of Sry and Sox9 is sufficient to induce the male developmental program, the molecular pathways that specify ovarian differentiation were unclear before the recent demonstration that mutations in the RSPO1 gene induce femaleto-male sex reversal in XX patients. By generating the corresponding mouse model, we have shown that Rspo1 is so far the earliest known gene controlling the female genetic developmental program. Rspo1 activates the canonical ␀ -catenin signaling pathway required for female somatic cell differentiation and germ cell commitment into meiosis. The aim of this review is to describe the roles of R-spondins (Rspo) in developmental processes and disorders and the current knowledge obtained from murine models. A particular focus will be on Rspo1 and its crucial function in sex determination

    PLoS Genet

    Get PDF
    In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1(KO)Sox9(cKO) ()), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1(KO)Sox9(cKO) mice. Moreover, since testis development occurs in XY Rspo1(KO)Sox9(cKO) mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9(cKO) mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised

    Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Get PDF
    The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad

    Mammalian sex determinationβ€”insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    Sox9 induces testis development in XX transgenic mice

    No full text

    I-elements and the Drosophila genome

    No full text
    International audienc
    • …
    corecore