6 research outputs found

    Brain hemodynamic intermediate phenotype links Vitamin B12 to cognitive profile of healthy and mild cognitive impaired subjects

    Get PDF
    Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype

    Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study

    Get PDF
    Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65-89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects

    Long-term beneficial impact of the randomised trial ‘Train the Brain’, a motor/cognitive intervention in mild cognitive impairment people: effects at the 14-month follow-up

    No full text
    No treatment options are currently available to counteract cognitive deficits and/or delay progression towards dementia in older people with mild cognitive impairment (MCI). The ‘Train the Brain’ programme is a combined motor and cognitive intervention previously shown to markedly improve cognitive functions in MCI individuals compared to non-trained MCI controls, as assessed at the end of the 7-month intervention. Here, we extended the previous analyses to include the long-term effects of the intervention and performed a data disaggregation by gender, education and age of the enrolled participants. We report that the beneficial impact on cognitive functions was preserved at the 14-month follow-up, with greater effects in low-educated compared to high-educated individuals, and in women than in men

    Effects of combined training on neuropsychiatric symptoms and quality of life in patients with cognitive decline

    No full text
    Background and aims: Cognitive impairments associated with aging and dementia are major sources of neuropsychiatric symptoms (NPs) and deterioration in quality of life (QoL). Preventive measures to both reduce disease and improve QoL in those affected are increasingly targeting individuals with mild cognitive impairment (MCI) at early disease stage. However, NPs and QoL outcomes are too commonly overlooked in intervention trials. The purpose of this study was to test the effects of physical and cognitive training on NPs and QoL in MCI. Methods: Baseline data from an MCI court (N = 93, mean age 74.9 ± 4.7) enrolled in the Train the Brain (TtB) study were collected. Subjects were randomized in two groups: a group participated to a cognitive and physical training program, while the other sticked to usual standard care. Both groups underwent a follow-up re-evaluation after 7 months from baseline. NPs were assessed using the Neuropsychiatric Inventory (NPI) and QoL was assessed using Quality of Life-Alzheimer’s Disease (QOL-AD) scale. Results: After 7 months of training, training group exhibited a significant reduction of NPs and a significant increase in QOL-AD with respect to no-training group (p = 0.0155, p = 0.0013, respectively). Our preliminary results suggest that a combined training can reduce NPs and improve QoL. Conclusions: Measuring QoL outcomes is a potentially important factor in ensuring that a person with cognitive deficits can ‘live well’ with pathology. Future data from non-pharmacological interventions, with a larger sample and a longer follow-up period, could confirm the results and the possible implications for such prevention strategies for early cognitive decline.Background and aims: Cognitive impairments associated with aging and dementia are major sources of neuropsychiatric symptoms (NPs) and deterioration in quality of life (QoL). Preventive measures to both reduce disease and improve QoL in those affected are increasingly targeting individuals with mild cognitive impairment (MCI) at early disease stage. However, NPs and QoL outcomes are too commonly overlooked in intervention trials. The purpose of this study was to test the effects of physical and cognitive training on NPs and QoL in MCI. Methods: Baseline data from an MCI court (N = 93, mean age 74.9 ± 4.7) enrolled in the Train the Brain (TtB) study were collected. Subjects were randomized in two groups: a group participated to a cognitive and physical training program, while the other sticked to usual standard care. Both groups underwent a follow-up re-evaluation after 7 months from baseline. NPs were assessed using the Neuropsychiatric Inventory (NPI) and QoL was assessed using Quality of Life-Alzheimer’s Disease (QOL-AD) scale. Results: After 7 months of training, training group exhibited a significant reduction of NPs and a significant increase in QOL-AD with respect to no-training group (p = 0.0155, p = 0.0013, respectively). Our preliminary results suggest that a combined training can reduce NPs and improve QoL. Conclusions: Measuring QoL outcomes is a potentially important factor in ensuring that a person with cognitive deficits can ‘live well’ with pathology. Future data from non-pharmacological interventions, with a larger sample and a longer follow-up period, could confirm the results and the possible implications for such prevention strategies for early cognitive decline

    Effects of combined training on neuropsychiatric symptoms and quality of life in patients with cognitive decline

    No full text
    BACKGROUND AND AIMS: Cognitive impairments associated with aging and dementia are major sources of neuropsychiatric symptoms (NPs) and deterioration in quality of life (QoL). Preventive measures to both reduce disease and improve QoL in those affected are increasingly targeting individuals with mild cognitive impairment (MCI) at early disease stage. However, NPs and QoL outcomes are too commonly overlooked in intervention trials. The purpose of this study was to test the effects of physical and cognitive training on NPs and QoL in MCI. METHODS: Baseline data from an MCI court (N = 93, mean age 74.9 ± 4.7) enrolled in the Train the Brain (TtB) study were collected. Subjects were randomized in two groups: a group participated to a cognitive and physical training program, while the other sticked to usual standard care. Both groups underwent a follow-up re-evaluation after 7 months from baseline. NPs were assessed using the Neuropsychiatric Inventory (NPI) and QoL was assessed using Quality of Life-Alzheimer's Disease (QOL-AD) scale. RESULTS: After 7 months of training, training group exhibited a significant reduction of NPs and a significant increase in QOL-AD with respect to no-training group (p = 0.0155, p = 0.0013, respectively). Our preliminary results suggest that a combined training can reduce NPs and improve QoL. CONCLUSIONS: Measuring QoL outcomes is a potentially important factor in ensuring that a person with cognitive deficits can 'live well' with pathology. Future data from non-pharmacological interventions, with a larger sample and a longer follow-up period, could confirm the results and the possible implications for such prevention strategies for early cognitive decline

    Vascular Function Is Improved After an Environmental Enrichment Program: The Train the Brain-Mind the Vessel Study

    Get PDF
    Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallel-group study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P=0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10-3; P=0.009); only the latter remained significant after adjustment for confounders (P=0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P=0.006; P=0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34+ cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa-1; P=0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function, mobilization of progenitor CD34+ cells, and preserved carotid distensibility
    corecore