43 research outputs found

    Structure of ternary additive hard-sphere fluid mixtures

    Full text link
    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.Comment: 11 pages, including 8 figures; A minor change; accepted for publication in PR

    A cluster theory for a Janus fluid

    Full text link
    Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    Get PDF
    International audienceAbsorption of light gases in polyethylene (PE) is studied using two versions of the Statistical Associating Fluid Theory (SAFT): SAFT for chain molecules with attractive potentials of variable range (VR) and simplified perturbed-chain (PC) SAFT. Emphasis is placed on the light gases typically present during ethylene polymerisation in the gas-phase reactor (GPR) process. The two approaches are validated using experimental binary-mixture data for gas absorbed in PE, and predictions are made for mixtures of more components. For most cases studied both SAFT versions perform equally well. For the case of ternary mixtures of two gases with PE, it is predicted that the less-volatile of the two gases acts to enhance the absorption of the more-volatile gas, while the more-volatile gas inhibits the absorption of the less-volatile gas. This general behaviour is also predicted in mixtures containing more gases, such as typical reactor mixtures. The magnitude of the effect may vary considerably, depending on the relative proximity of the gas-mixture saturation pressure to the reactor pressure; for example it is predicted that the absorption of ethylene may be approximately doubled if diluent gases, propane or nitrogen, are partially or completely replaced by less-volatile butane or pentane for a reactor pressure similar to 2 MPa. In the case of a co-polymerisation reaction, it is predicted that increases in absorption of both co-monomers may be obtained in roughly equal proportion. Our findings cast light on the so-called co-monomer effect, in which substantial increases in the rate of ethylene polymerisation are observed in the presence of hexene co-monomer, while suggesting that the effect is more general and not restricted to co-monomer. For example, similar rate increases may be expected in the presence of, e.g., pentane instead of hexene, but without the change in the branch structure of the produced polymer that is inevitable when the amount of co-monomer is increased

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec
    corecore