168 research outputs found

    Shape-from-intrinsic operator

    Full text link
    Shape-from-X is an important class of problems in the fields of geometry processing, computer graphics, and vision, attempting to recover the structure of a shape from some observations. In this paper, we formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic differential operators defined on the mesh. Particularly interesting instances of our SfO problem include synthesis of shape analogies, shape-from-Laplacian reconstruction, and shape exaggeration. Numerically, we approach the SfO problem by splitting it into two optimization sub-problems that are applied in an alternating scheme: metric-from-operator (reconstruction of the discrete metric from the intrinsic operator) and embedding-from-metric (finding a shape embedding that would realize a given metric, a setting of the multidimensional scaling problem)

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Gallstones in Elderly Patients: Impact of Laparoscopic Cholecystectomy

    Get PDF
    The use of laparoscopic cholecystectomy (LC) in elderly patients may pose problems because of their poor general condition, especially of cardiopulmonary function. Moreover, these patients present with acute cholecystitis and associated common bile duct stones more often than their younger counterparts. From 1990 to 1999, the authors performed 943 LCs; 31 (3.2%) were attempted on elderly patients, 11 (35%) of which were on an emergency basis because of acute cholecystitis, cholangitis or acute biliary pancreatitis. Ten per cent of LCs needed to be converted to an open cholecystectomy, most often because of an increase in the partial pressure of carbon dioxide in the blood produced by excessive operative time. A gasless procedure was used in the last three years of the study on eight cases; the overall rate of conversion from LC to open cholecystectomy in this group was 0%. Associated gallbladder and common bile duct stones were found in five (16%) patients (four preoperative LC endoscopic sphincterotomy and one transcystic approach). The success rate in both of these cases was 100%, overall morbidity was 29% and there was no mortality. These results show that LC is a feasible and safe procedure for use in elderly patients. Gasless LC should be preferred in patients classified as American Society of Anesthesiologists' class III because an excessive duration of operation is the most common reason for converting to an open cholecystectomy

    Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research

    Get PDF
    Non-invasive respiratory support (NIRS) has increasingly been used in the management of COVID-19-associated acute respiratory failure, but questions remain about the utility, safety, and outcome benefit of NIRS strategies. We identified two randomised controlled trials and 83 observational studies, compromising 13 931 patients, that examined the effects of NIRS modalities-high-flow nasal oxygen, continuous positive airway pressure, and bilevel positive airway pressure-on patients with COVID-19. Of 5120 patients who were candidates for full treatment escalation, 1880 (37%) progressed to invasive mechanical ventilation and 3658 of 4669 (78%) survived to study end. Survival was 30% among the 1050 patients for whom NIRS was the stated ceiling of treatment. The two randomised controlled trials indicate superiority of non-invasive ventilation over high-flow nasal oxygen in reducing the need for intubation. Reported complication rates were low. Overall, the studies indicate that NIRS in patients with COVID-19 is safe, improves resource utilisation, and might be associated with better outcomes. To guide clinical decision making, prospective, randomised studies are needed to address timing of intervention, optimal use of NIRS modalities-alone or in combination-and validation of tools such as oxygenation indices, response to a trial of NIRS, and inflammatory markers as predictors of treatment success

    Draft genome sequence of the anatoxin-a producing cyanobacterium Tychonema bourrellyi B0820 isolated from the epilimnion of the deep Alpine Lake Garda

    Get PDF
    We report the draft genome sequence of strain B0820 of the cyanobacterium Tychonema bourrellyi isolated from the epilimnion of Lake Garda and assembled from a metagenome of a non-axenic culture. The strain analyzed was shown to produce anatoxin-a, a potent neurotoxin that can cause fatal intoxication in exposed organism

    Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors

    Get PDF
    Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). Results: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. Conclusion: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications

    Geometric deep learning

    Get PDF
    The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas

    Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression

    Get PDF
    peer-reviewedWe tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway
    • 

    corecore