660 research outputs found

    Beam Test of a Segmented Foil SEM Grid

    Full text link
    A prototype Secondary-electron Emission Monitor (SEM) was installed in the 8 GeV proton transport line for the MiniBooNE experiment at Fermilab. The SEM is a segmented grid made with 5 um Ti foils, intended for use in the 120 GeV NuMI beam at Fermilab. Similar to previous workers, we found that the full collection of the secondary electron signal requires a bias voltage to draw the ejected electrons cleanly off the foils, and this effect is more pronounced at larger beam intensity. The beam centroid and width resolutions of the SEM were measured at beam widths of 3, 7, and 8 mm, and compared to calculations. Extrapolating the data from this beam test, we expect a centroid and width resolutions of 20um and 25 um, respectively, in the NuMI beam which has 1 mm spot size.Comment: submitted to Nucl. Instr. Meth.

    Microstructural Investigations of Novel High Temperature Alloys Based on NiAl-(Cr,Mo)

    Get PDF
    Apart from the reported transition from the fibrous morphology in NiAl-34Cr to lamellae by adding 0.6 at.% Mo, further morphology transformations along the eutectic trough in the NiAl-(Cr,Mo) alloys were observed. Compositions with at least 10.3 at.% Cr have lamellar morphology while the first tendency to fiber formation was found at 9.6 at.% Cr. There is a compositional range, where both lamellae and fibers are present in the microstructure and a further decrease in Cr to 1.8at.% Cr results in fully fibrous morphology. Alongside these morphology changes of the (Cr,Mo)ss_{ss} reinforcing phase, its volume fraction was found to be from 41 to 11 vol.% confirming the trend predicted by the CALPHAD approach. For mixed morphologies in-situ X-ray diffraction experiments performed between room and liquidus temperature accompanied by EDX measurements reveal the formation of a gradient in composition for the solid solution. A new Mo-rich NiAl-9.6Cr-10.3Mo alloy clearly shows this effect in the as-cast state. Moreover, crystallographic orientation examination yields two different types of colonies in this composition. In the first colony type, the orientation relationship between NiAl matrix and (Cr,Mo)ss_{ss} reinforcing phase was (100)NiAl∣∣_{NiAl||} (100) Cr,Mo_{Cr,Mo} and ⟨100⟩ NiAl∣∣_{NiAl||} ⟨100⟩ Cr,Mo_{Cr,Mo}. An orientation relationship described by a rotation of almost 60° about ⟨111⟩ was found in the second colony type. In both cases, no distinct crystallographic plane as phase boundary was observe

    High-Throughput Omics Technologies: Potential Tools for the Investigation of Influences of EMF on Biological Systems

    Get PDF
    The mode of action of a huge amount of agents on biological systems is still unknown. One example where more questions than answers exist is covered by the term electromagnetic fields (EMF). Use of wireless communication, e.g. mobile phones, has been escalated in the last few years. Due to this fact, a lot of discussions dealt with health consequences of EMF emitted by these devices and led to an increased investigation of their effects to biological systems, mainly by using traditional methods. Omics technologies have the advantage to contain methods for investigations on DNA-, RNA- and protein level as well as changes in the metabolism

    On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides

    Full text link
    Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are electronically active in superconducting copper-oxides by stabilizing single phases with enhanced TcT_c, whereas other metal-oxygen complexes deteriorate copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation states are closed shell d10d^{10} or inert s2s^2 pair ions. Their electronic configurations have a strong tendency to polarize the oxygen environment. The closed shell dd ions with low lying nd10↔nd9(n+1)snd^{10}\leftrightarrow nd^9(n+1)s excitations form linear complexes through dz2−sd_{z^2}-s hybridization polarizing the apical oxygens. Comparatively low nd9(n+1)snd^9(n+1)s excitation energies distinguish Cu1+,3+,Tl3+,Hg2+\rm Cu^{1+,3+}, Tl^{3+}, Hg^{2+} from other closed shell d10d^{10} ions deteriorating copper-oxide superconductivity, {\it e.g.} Zn2+\rm Zn^{2+}.Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc. Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199

    Two-parameter neutrino mass matrices with two texture zeros

    Full text link
    We reanalyse Majorana-neutrino mass matrices M_nu with two texture zeros, by searching for viable hybrid textures in which the non-zero matrix elements of M_nu have simple ratios. Referring to the classification scheme of Frampton, Glashow and Marfatia, we find that the mass matrix denoted by A1 allows the ratios (M_nu)_{mu mu} : (Mnu)_{tau tau} = 1:1 and (M_nu)_{e tau} : (Mnu)_{mu tau} = 1:2. There are analogous ratios for texture A2. With these two hybrid textures, one obtains, for instance, good agreement with the data if one computes the three mixing angles in terms of the experimentally determined mass-squared differences Delta m^2_21 and Delta m^2_31. We could not find viable hybrid textures based on mass matrices different from those of cases A1 and A2.Comment: 10 pages, no figures, minor changes, some references adde

    Content Representation of Tactile Mental Imagery in Primary Somatosensory Cortex

    Get PDF
    The imagination of tactile stimulation has been shown to activate primary somatosensory cortex (S1) with a somatotopic specificity akin to that seen during the perception of tactile stimuli. Using fMRI and multivariate pattern analysis, we investigate whether this recruitment of sensory regions also reflects content-specific activation (i.e., whether the activation in S1 is specific to the mental content participants imagined). To this end, healthy volunteers (n = 21) either perceived or imagined three types of vibrotactile stimuli (mental content) while fMRI data were acquired. Independent of the content, during tactile mental imagery we found activation of frontoparietal regions, supplemented with activation in the contralateral BA2 subregion of S1, replicating previous reports. While the imagery of the three different stimuli did not reveal univariate activation differences, using multivariate pattern classification, we were able to decode the imagined stimulus type from BA2. Moreover, cross-classification revealed that tactile imagery elicits activation patterns similar to those evoked by the perception of the respective stimuli. These findings promote the idea that mental tactile imagery involves the recruitment of content-specific activation patterns in sensory cortices, namely in S1

    A NOVEL STUDY EXAMINING COGNITIVE-MOTOR INTERFERENCE AFTER ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION

    Get PDF
    The aim of this study is to assess the feasibility of examining cognitive motor interference (CMi) in athletes following anterior cruciate ligament reconstruction (ACLR) and return to sport through electroencephalography (EEG) and three-dimensional motion capture recordings. A 128-electrode EEG system is used to track brain wave patterns for specific biomarkers of CMi during sitting and balance tasks. An 8-camera Optitrack system is used to obtain three-dimensional kinematics during anticipated and unanticipated drop vertical jumps. Preliminary EEG N200 amplitudes (ACL: -4.99 ± 2.39; Control: -7.75 ± 5.83) and peak knee flexion (ACL: 93.29 ± 12.92°; Control: 92.87 ± 7.17°) during dual-task and unanticipated landings, respectively, demonstrate the feasibility of this study. Future work will continue to assess the effect of CMi on risk factors for secondary ACL injury

    A zone melting device for the in situ observation of directional solidification using high-energy synchrotron x rays editors-pick

    Get PDF
    Directional solidification (DS) is an established manufacturing process to produce high-performance components from metallic materials with optimized properties. Materials for demanding high-temperature applications, for instance in the energy generation and aircraft engine technology, can only be successfully produced using methods such as directional solidification. It has been applied on an industrial scale for a considerable amount of time, but advancing this method beyond the current applications is still challenging and almost exclusively limited to post-process characterization of the developed microstructures. For a knowledge-based advancement and a contribution to material innovation, in situ studies of the DS process are crucial using realistic sample sizes to ensure scalability of the results to industrial sizes. Therefore, a specially designed Flexible Directional Solidification (FlexiDS) device was developed for use at the P07 High Energy Materials Science beamline at PETRA III (Deutsches Elektronen–Synchrotron, Hamburg, Germany). In general, the process conditions of the crucible-free, inductively heated FlexiDS device can be varied from 6 mm/h to 12 000 mm/h (vertical withdrawal rate) and from 0 rpm to 35 rpm (axial sample rotation). Moreover, different atmospheres such as Ar, N2, and vacuum can be used during operation. The device is designed for maximum operation temperatures of 2200 °C. This unique device allows in situ examination of the directional solidification process and subsequent solid-state reactions by x-ray diffraction in the transmission mode. Within this project, different structural intermetallic alloys with liquidus temperatures up to 2000 °C were studied in terms of liquid–solid regions, transformations, and decompositions, with varying process conditions
    • …
    corecore