569 research outputs found

    DOA Estimation of a Wideband Signal Using a 2-D Array Antenna with Spatial Processing Capability

    Full text link
    This paper describes investigations into Direction–Of–Arrival (DOA) estimation of a wideband signal by a two–dimensional array antenna, which employs only spatial signal processing for beam forming. The elements of this array are arranged in a horizontal rectangular lattice to steer a beam in azimuth over a wide frequency band. By applying the concept of interpolated array, a composite covariance matrix is produced. This composite covariance matrix is a simple addition of covariance matrices of narrowband virtual arrays, being stretched or compressed versions of a nominal array, all featuring the same radiation pattern. DOA is estimated by eigen–decomposition of the composite covariance matrix using the narrowband MUSIC algorithm. The performance of the proposed DOA estimation method is demonstrated by computer simulations. The obtained results indicate that the two–dimensional array provides better estimation of DOA than the one–dimensional one when the interpolated array technique in conjunction with the MUSIC algorithm is applie

    Microwave System for the Early Stage Detection of Congestive Heart Failure

    Get PDF
    Fluid accumulation inside the lungs, known as cardiac pulmonary edema, is one of the main early symptoms of congestive heart failure (CHF). That accumulation causes significant changes in the electrical properties of the lung tissues, which in turn can be detected using microwave techniques. To that end, the design and implementation of an automated ultrahigh-frequency microwave-based system for CHF detection and monitoring is presented. The hardware of the system consists of a wideband folded antenna attached to a fully automated vertical scanning platform, compact microwave transceiver, and laptop. The system includes software in the form of operational control, signal processing, and visualizing algorithms. To detect CHF, the system is designed to vertically scan the rear side of the human torso in a monostatic radar approach. The collected data from the scanning is then visualized in the time domain using the inverse Fourier transform. These images show the intensity of the reflected signals from different parts of the torso. Using a differential based detection technique, a threshold is defined to differentiate between healthy and unhealthy cases. This paper includes details of developing the automated platform, designing the antenna with the required properties imposed by the system, developing a signal processing algorithm, and introducing differential detection technique besides investigating miscellaneous probable CHF cases

    Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    Get PDF
    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included

    Experimental investigation of interface states and photovoltaic effects on the scanning capacitance microscopy measurement for p-n junction dopant profiling

    Get PDF
    Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics

    PI controller tuning for load disturbance rejection using constrained optimization

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg. In this paper, a simple and effective PI controller tuning method is presented. To take both performance requirements and robustness issues into consideration, the design technique is based on optimization of load disturbance rejection with a constraint either on the gain margin or phase margin. In addition, a simplified form of the resulting tuning formulae is obtained for first order plus dead time models. To demonstrate the ability of the proposed tuning technique in dealing with a wide range of plants, simulation results for several examples, including integrating, non-minimum phase and long dead time models, are provided

    Influence of Edge Effects on Laser-Induced Surface Displacement of Opaque Materials by Photothermal Interferometry

    Get PDF
    We demonstrate the influence of edge effects on the photothermal-induced phase shift measured by a homodyne quadrature laser interferometer and compare the experiments with rigorous theoretical descriptions of thermoelastic surface displacement of metals. The finite geometry of the samples is crucial in determining how the temperature is distributed across the material and how this affects the interferometer phase shift measurements. The optical path change due to the surface thermoelastic deformation and thermal lens in the surrounding air is decoded from the interferometric signal using analytical and numerical tools. The boundary/edge effects are found to be relevant to properly describe the interferometric signals. The tools developed in this study provide a framework for the study of finite size effects in heat transport in opaque materials and are applicable to describe not only the phase shift sensed by the interferometer but also to contribute to the photothermal-based technologies employing similar detection mechanisms

    On the origin of negative target currents during laser ablation of polyethylene

    Get PDF
    The exposure of a target to a focused laser beam results in the occurrence of a time-varying current between the target itself and the grounded vacuum chamber. This current is composed by three distinct phases, namely the ignition phase, in which the laser pulse drives the electron emission, while electrons coming from the ground through the target holder balance the positive charge generated on the target. The active phase appears at post-pulse times and it is characterized by the presence of peaked structures in the time-resolved current, representing characteristics of the target composition. Lastly, the afterglow phase is determined by a current of electrons flowing from the target to the ground. During the active phase of the target current resulting from polymers ablation with an UV KrF laser, negative target current peaks are observed, whose origin is still unknown. We investigate the dependence of these current structures on the dimensions of the target, using ultra-high molecular weight polyethylene disks of different thickness
    • …
    corecore