152 research outputs found

    Coercivity reduction in a two-dimensional array of nanoparticles

    Full text link
    We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.Comment: 7 pages, 5 figure

    Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Full text link
    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: Ultrashort terahertz (THz) excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, the pairwise and the many body entanglement. If the characteristic frequencies of the generated states are non-commensurate then a partial loss of pair concurrence occurs. Increasing the system size this effect becomes even more pronounced. Many particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench- induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.Comment: 13 pages, 10 figures, submitted in PR

    Magnetophononics: ultrafast spin control through the lattice

    Full text link
    Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric \CrO\ as our model system, we show that excitation of a polar mode at 17 THz causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr distance. In particular, the quasi-static deformation induced by nonlinear phononic coupling yields a structure with a modified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange interaction strengths using phonons provides a new route to creating non-equilibrium magnetic states and suggests new avenues for fast manipulation of spin arrangements and dynamics.Comment: 11 pages with 7 figure

    Stochastic heating of a molecular nanomagnet

    Full text link
    We study the excitation dynamics of a single molecular nanomagnet by static and pulsed magnetic fields. Based on a stability analysis of the classical magnetization dynamics we identify analytically the fields parameters for which the energy is stochastically pumped into the system in which case the magnetization undergoes diffusively and irreversibly a large angle deflection. An approximate analytical expression for the diffusion constant in terms of the fields parameters is given and assessed by full numerical calculations.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
    corecore