938 research outputs found

    Return times for Stochastic processes with power-law scaling

    Full text link
    An analytical study of the return time distribution of extreme events for stochastic processes with power-law correlation has been carried on. The calculation is based on an epsilon-expansion in the correlation exponent: C(t)=|t|^{-1+epsilon}. The fixed point of the theory is associated with stretched exponential scaling of the distribution; analytical expressions, valid in the pre-asymptotic regime, have been provided. Also the permanence time distribution appears to be characterized by stretched exponential scaling. The conditions for application of the theory to non-Gaussian processes have been analyzed and the relations with the issue of return times in the case of multifractal measures have been discussed.Comment: 9 pages, 5 figures, revtex

    Control of unstable steady states by time-delayed feedback methods

    Full text link
    We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the control loop and non-zero latency times associated with the generation and injection of the feedback signal.Comment: 8 pages, 11 figure

    Significance of durability of mineral fibers for their toxicity and carcinogenic potency in the abdominal cavity of rats in comparison with the low sensitivity of inhalation studies.

    Get PDF
    At the same time that carcinogenicity of very thin glass fibers after intrapleural and intraperitoneal (ip) administration was demonstrated (1,2) researchers found that gypsum fibers and HCI-leached chrysotile fibers were easily soluble in the peritoneal cavity. This led to the conclusion that the chemical composition of fibers was not responsible for the carcinogenesis but that the degree of carcinogenic potency of a fiber depended on the extent to which it retained its fibrous structure. A thin glass fiber with a low biodurability did not induce tumors after ip injection of a high dose, although the ip test had been criticized for being "overly sensitive." The ip model has been the most successful for determining carcinogenicity of inorganic fibers and establishing dose-response relationships; but to determine the possibilities and limitations of this test model, very high doses of nonfibrous silicon carbide and of a slightly durable glass fiber type were injected ip in Wistar rats. No obviously acute or chronic toxic effect was observed in 90 weeks, but there was a 40% incidence of serosal tumors in the group treated with glass fibers. A pilot study on the persistence of slag fibers in the omentum of rats after ip injection showed a half-time of about 1 year. It was calculated that an ip injection of 10(9) fibers would lead to a concentration of fiber numbers in the ash of the omentum in the same range as the concentration in the lung after 2 years of inhalation exposure. The long-term inhalation study with fibers in rats has been called the "gold standard" for risk characterization.(ABSTRACT TRUNCATED AT 250 WORDS

    Dose-response relationship of fibrous dusts in intraperitoneal studies.

    Get PDF
    The relationship between the number of fibers injected intraperitoneally and the occurrence of peritoneal mesotheliomas in rats was investigated using data from a series of carcinogenicity studies with several fibrous dusts. Based on observed tumor incidences ranging between 10 and 90%, the hypothesis of a common slope of dose-response relationships (parallel probit lines in probit analysis) cannot be rejected. In general, parallelism of probit lines is considered an indication of a common mode of action. Analysis of the shape of the dose-response relationship, with one apparent exception, shows virtually linear or superlinear behavior, i.e., from these data, there is no indication of a decrease in carcinogenic potency of an elementary carcinogenic unit at lower doses

    Hemispheric competence for auditory spatial representation

    Get PDF
    Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortice

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even superseded the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS). MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients and healthy controls (n = 147). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of..

    Placement of metallic biliary endoprostheses in complex hilar tumours

    Get PDF
    AbstractPurposeTo assess the technical success, clinical success and complications after 1 month of percutaneous biliary drainage with the placement of several metallic endoprostheses in complex hilar liver tumours.Materials and methodsThis is a retrospective study, on a homogenous target population of 68 consecutive patients, who underwent multiple percutaneous biliary drainage for complex hilar tumour (Bismuth type II, III and IV) between August 1998 and August 2010. Patients benefiting from previous endoscopic drainage were excluded from the study. The clinical data, biological data, imaging and interventional radiology procedures were studied.ResultsThe rate of success of the technique was 98.5% and the clinical rate of success was 84% after 1 week and 93% after 1 month. The rate of minor and major complications was 25 and 13% respectively.ConclusionMultiple percutaneous biliary drainage in complex hilar tumour is a safe and effective first intention procedure

    Radiative damping: a case study

    Full text link
    We are interested in the motion of a classical charge coupled to the Maxwell self-field and subject to a uniform external magnetic field, B. This is a physically relevant, but difficult dynamical problem, to which contributions range over more than one hundred years. Specifically, we will study the Sommerfeld-Page approximation which assumes an extended charge distribution at small velocities. The memory equation is then linear and many details become available. We discuss how the friction equation arises in the limit of "small" B and contrast this result with the standard Taylor expansion resulting in a second order equation for the velocity of the charge.Comment: 4 figure
    • …
    corecore