225 research outputs found

    Magnetic field in Cepheus A as deduced from OH maser polarimetric observations

    Full text link
    We present the results of MERLIN polarization mapping of OH masers at 1665 and 1667 MHz towards the Cepheus A star-forming region. The maser emission is spread over a region of 6 arcsec by 10 arcsec, twice the extent previously detected. In contrast to the 22 GHz water masers, the OH masers associated with H II regions show neither clear velocity gradients nor regular structures. We identified ten Zeeman pairs which imply a magnetic field strength along the line-of-sight from -17.3 to +12.7 mG. The magnetic field is organised on the arcsecond scale, pointing towards us in the west and away from us in the east side. The linearly polarized components, detected for the first time, show regularities in the polarization position angles depending on their position. The electric vectors of OH masers observed towards the outer parts of H II regions are consistent with the interstellar magnetic field orientation, while those seen towards the centres of H II regions are parallel to the radio-jets. A Zeeman quartet inside a southern H II region has now been monitored for 25 years; we confirm that the magnetic field decays monotonically over that period.Comment: 10 pages, 6 figures,accepted for publication in MNRA

    The 2009 National School Climate Survey: The Experiences of Lesbian, Gay, Bisexual and Transgender Youth in Our Nation's Schools

    Get PDF
    National survey of the school experiences of 7,261 lesbian, gay, bisexual and trasngender secondary school students.In our 2009 survey, we examine the experiences of LGBT students with regard to indicators of negative school climate:hearing biased remarks, including homophobic remarks, in school;feeling unsafe in school because of personal characteristics, such as sexual orientation, gender expression, or race/ethnicity;missing classes or days of school because of safety reasons; andexperiences of harassment and assault in school. We also examine the possible negative effects of a hostile school climate on LGBT students' academic achievement, educational aspirations, and psychological well-being. We explore the diverse nature of LGBT students' experiences by reporting on how these differ by students' personal and community characteristics. We also examine whether or not students report experiences of victimization to school officials or to family members and how these adults address the problem. In addition, we demonstrate the degree to which LGBT students have access to supportive resources in school, and we explore the possible benefits of these resources, including Gay-Straight Alliances (GSAs), school harassment/assault policies, supportive school staff, and curriculum that is inclusive of LGBT-related topics.Given that we now have 10 years of data, we examine changes over the past decade on both indicators of negative school climate and levels of access to LGBT-related resources in schools

    The nature of the methanol maser ring G23.657-00.127

    Full text link
    Methanol masers are associated with young high-mass stars and are an important tool for investigating the process of massive star formation. The recently discovered methanol maser ring in G23.657-00.127 provides an excellent ``laboratory'' for a detailed study of the nature and physical origin of methanol maser emission, as well as parallax and proper motion measurements. Multi-epoch observations of the 12.2 GHz methanol maser line from the ring were conducted using the Very Long Baseline Array. Interferometric observations with milliarcsecond resolution enabled us to track single maser spots in great detail over a period of 2 years. We have determined the trigonometric parallax of G23.657-00.127 to be 0.313+/-0.039 mas, giving a distance of 3.19{+0.46}{-0.35} kpc. The proper motion of the source indicates that it is moving with the same circular velocity as the LSR, but it shows a large peculiar motion of about 35 km/s toward the Galactic center.Comment: 6 pages, 3 figures, accepted for publication in A&

    EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions III. The flux-limited sample

    Get PDF
    Theoretical simulations and observations at different angular resolutions have shown that magnetic fields have a central role in massive star formation. Like in low-mass star formation, the magnetic field in massive young stellar objects can either be oriented along the outflow axis or randomly. Measuring the magnetic field at milliarcsecond resolution (10-100 au) around a substantial number of massive young stellar objects permits determining with a high statistical significance whether the direction of the magnetic field is correlated with the orientation of the outflow axis or not. In late 2012, we started a large VLBI campaign with the European VLBI Network to measure the linearly and circularly polarized emission of 6.7 GHz methanol masers around a sample of massive star-forming regions. This paper focuses on the first seven observed sources, G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35, G37.43+1.51, G174.20-0.08, and G213.70-12.6. For all these sources, molecular outflows have been detected in the past. We detected a total of 176 methanol masing cloudlets toward the seven massive star-forming regions, 19% of which show linearly polarized emission. The methanol masers around the massive young stellar object MM1 in G174.20-0.08 show neither linearly nor circularly polarized emission. The linear polarization vectors are well ordered in all the other massive young stellar objects. We measured significant Zeeman splitting toward both A1 and A2 in G24.78+0.08, and toward G29.86-0.04 and G213.70-12.6. By considering all the 19 massive young stellar objects reported in the literature for which both the orientation of the magnetic field at milliarcsecond resolution and the orientation of outflow axes are known, we find evidence that the magnetic field (on scales 10-100 au) is preferentially oriented along the outflow axes.Comment: 17 pages, 10 figures, 9 tables, accepted by Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1306.633
    • …
    corecore