166 research outputs found

    Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts

    Get PDF
    The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN

    Feed Intake and Diet Selection by Sheep on Rangeland at Two Phenological Stages in North Kordofan State, Sudan

    Get PDF
    North Kordofan is a leading State of Sudan in animal and range resources. Animal production is traditional and extensive, depending on natural rangeland. Sheep rank first in importance amounting to about 12.9 million heads. This study was conducted at El Demokeya Forest Reserve, North Kordofan State, Sudan at two range sites, protected and open. The objectives were to determinate feed intake and assess the plant species selected by sheep and development of preference indices for use in managing the rangeland

    Development of a bilayered system for periodontal regeneration using tissue engineering approaches

    Get PDF
    Periodontitis is a prevalent gram negative infection disease that causes the destruction of the tooth supportive tissues. Effective treatment of periodontal disease is important, since periodontal disease is correlated with several systemic diseases. However, adult periodontal tissues have a low potential of self-renewing and regeneration. Concerted efforts have been made to accelerate periodontal tissue regeneration, using a plethora of techniques including grafting materials, signalling molecules and cell-based tissue engineering. Nevertheless, a strategy for predictable reconstruction of normal structure and functionality of periodontal damaged tissue is still missing. In this work, we propose the development of a bilayered system for the regeneration of alveolar bone and periodontal ligament. This system consists of a bilayered composite made of calcium phosphate (CaP) cement incorporating hyaluronic acid microspheres loaded with Platelet Lysates (PL) and a hydrogel layer based on PL, harbouring mesenchymal stem cells (MSCs). The advantage of this strategy lies in the ability to develop a system that can be easily injected and which provides adequate mechanical support, both initially and during new tissue ingrowth. After the degradation of the HA microspheres incorporated in the CaP cement, a fully interconnected network can be created, which leads to rapid penetration of bone-forming cells into the CaP cement. Additionally, the distinct degradation rates of the components of the bilayered system allow a controlled release of the entrapped growth factors and further accelerate the periodontal tissues remodelling process, mimicking the physiologic wound healing process. The data collected suggests that it is possible to fabricate the cement composite layer incorporating PL from which a number of growth factors are released in a controlled manner. Moreover, the cement composites incorporating HA microspheres loaded with PL show low cytotoxic values and induce the expression of early markers of osteogenic differentiation in human adipose-derived stem cells (hACS)

    Diet Selection by Goats on Rangeland of North Kordofan State, Sudan

    Get PDF
    This study was conducted at El Demokeya forest, North Kordofan State, Sudan. The objective was to evaluate goat diet botanical composition as an indicator for pasture quality. Bite counts were obtained from seven goats in protected and open rangeland sites. Percent plant cover in the two range sites were 81.9% and 87.5% respectively. Density was 260.9 and 181.9 plants / m2 respectively (P \u3c 0.05). At flowering, goat diet contained 10.8% ± 1.12 and 11.8% ± 5.94 CP in protected and open sites respectively. At seed set CP% was 8.1 ± 1.32 and 8.2 ± 3.01 respectively (P \u3e 0.01). Diet CP% was higher in diet than in forage biomass vegetation. At flowering, in protected range Acacia senegal (26.6%), Echinocloa colonum (11.34%) and Zaleya pentandra (9.08%) were the browse, grasses and forbs most selected, respectively. In the open range site Acacia senegal was 22.58%, Eragrostis tremula 13.78% and Zaleya pentandra 11.05% of the diet. At seed set, in the protected range site, the diet contained 18.36% Justica kotschyi, 15.02% Acacia senegal and 4.28% Eragrostis tremula.While in open range site Eragrostis tremula was 52.92%, Acacia senegal 25.58% and Chrozophora brocchiana 1.62%. Grasses and forbs with highest relative preference indeces (RPI) at flowering in protected range site were Cenchrus biflorus (RPI=2.05) and Justica kotschyi (RPI=7.93). In open range site the grass and forb with highest RPI were Echinocloa colonum (RPI=1.17) and Zornia glochidiata (RPI=6.7) respectively. Diet botanical composition is an indicator of plant preference and is useful in selecting plants for reseeding of deteriorated range and in identifying key species for range management

    Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna

    Get PDF
    Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion

    Analyzing the Implementation of Lean Methodologies and Practices in the Portuguese Industry: A Survey

    Get PDF
    The mass production paradigm on which much of the industry was based has changed. The market is increasingly demanding, requesting diversity and products that are more and more adapted to personal wishes and requirements. This implies producing a greater diversity of products in smaller quantities. Competitiveness is enormous, which forces most companies to be truly effective and efficient, taking care of product quality, delivery time, and final cost. Lean methodologies have been a valuable aid in this field. The diversity of Lean tools has been shown to have answers to the most diverse challenges, and companies are aware of this, increasingly adopting methodologies and processes that aim to progressively reduce waste and adapting their production paradigm to what the market requires. This work intends to provide a vision, as global as possible, of the pathway of Lean implementation in the Portuguese industry. For this purpose, a survey was carried out with a significant sample of Portuguese industrial companies from a wide range of activity sectors. The data collected through the survey were treated statistically, and then a SWOT analysis of the results was performed, which provided a collection of precious information on the evolution of industrial companies in Portugal.The author CP was partially supported by CMUP, which is financed by national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. F.J.G.S. would like to thank INEGI Research Center due to its continuous support, namely to Jorge Seabra, as well as all remaining CETRIB/INEGI/LAETA teal.info:eu-repo/semantics/publishedVersio

    Blood derivatives awaken in regenerative medicine strategies to modulate wound healing

    Get PDF
    Blood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms. Herein, we highlight recent trends on the use biomaterials to protect, sequester and deliver these pools of biomolecules in tissue engineering and regenerative medicine approaches. Particular emphasis is given to strategies that enable to control their spatiotemporal delivery and improve the selectivity of presentation profiles of the biomolecules derived from blood derivatives rich in platelets. Finally, we discussed possible directions for biomaterials design to potentiate the aimed regenerative effects of blood derivatives and achieve efficient therapies.BBM acknowledges the financial support from FCT/MCTES (Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia, e Ensino Superior) and the Fundo Social Europeu através do Programa Operacional do Capital Humano (FSE/POCH), PD/59/2013 for PD/BD/113807/2015. MGF acknowledges European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 706996 (PrinTendon). PB acknowledges RECOGNIZE and NORTE2020 (UTAP-ICDT/CTM-BIO/0023/2014). RMD acknowledges SFRH/BPD/112459/2015.info:eu-repo/semantics/publishedVersio

    Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration

    Get PDF
    Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues.RECOGNIZE project (UTAP-ICDT/CTM-BIO/0023/2014), project NORTE-01-0145-FEDER-000021. R.M.A. Domingues acknowledges FCT for SFRH/BPD/112459/2015. P.S. Babo acknowledges the project FOOD4CELLS (PTDC/CTM-BIO/4706/2014-POCI-01-0145-FEDER 016716) for his post-doc grantinfo:eu-repo/semantics/publishedVersio

    Injectable and magnetic responsive hydrogels with bioinspired ordered structures

    Get PDF
    Injectable hydrogels are particularly interesting for applications in minimally invasive tissue engineering and regenerative medicine strategies. However, the typical isotropic microstructure of these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable nanoparticles. Then, these nanoparticles (0.1-0.5 wt %) were incorporated within gelatin hydrogels, creating injectable and magnetically responsive materials with potential for various biomedical applications. Nanoparticle alignment within the hydrogel matrix was achieved under exposure to uniform low magnetic fields (108 mT), resulting in biomaterials with directional microstructure and anisotropic mechanical properties. The biological performance of these nanocomposite hydrogels was studied using adipose tissue derived human stem cells. Cells encapsulated in the nanocomposite hydrogels showed high rates of viability demonstrating that the nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns stemming from nanoparticle alignment induced the directional growth of seeded and, to a lower extent, encapsulated cells in the hydrogels, suggesting that this injectable system might find application in both cellular and acellular strategies targeting the regeneration of anisotropic tissues.Fundação para a Ciência e a Tecnologia for SFRH/BPD/112459/2015 (RD), EU’s H2020 programme for Marie Skłodowska-Curie grant agreement 706996 and for European Research Council grant agreement 772817 - MagTendon, project RECOGNIZE (UTAPICDT/CTM-BIO/0023/2014), project FOOD4CELLS (PTDC/CTM-BIO/4706/2014 - POCI-01- 0145-FEDER 016716) (PB), and project NORTE-01-0145-FEDER-000021

    Supercritical fluid technology as a tool to prepare gradient multifunctional architectures towards regeneration of osteochondral injuries

    Get PDF
    Platelet lysates (PLs) are a natural source of growth factors (GFs) known for its stimulatory role on stem cells which can be obtained after activation of platelets from blood plasma. The possibility to use PLs as growth factor source for tissue healing and regeneration has been pursued following different strategies. Platelet lysates are an enriched pool of growth factors which can be used as either a GFs source or as a three-dimensional (3D) hydrogel. However, most of current PLs-based hydrogels lack stability, exhibiting significant shrinking behavior. This chapter focuses on the application of supercritical fluid technology to develop three-dimensional architectures of PL constructs, crosslinked with genipin. The proposed technology allows in a single step operation the development of mechanically stable porous structures, through chemical crosslinking of the growth factors present in the PL pool, followed by supercritical drying of the samples. Furthermore gradient structures of PL-based structures with bioactive glass are also presented and are described as an interesting approach to the treatment of osteochondral defects.info:eu-repo/semantics/publishedVersio
    • …
    corecore