101 research outputs found

    Packing Returning Secretaries

    Full text link
    We study online secretary problems with returns in combinatorial packing domains with nn candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least 0.5721o(1)0.5721 - o(1) for growing nn, and an algorithm with ratio at least 0.54590.5459 for all n1n \ge 1. We extend all algorithms and ratios to k2k \ge 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(nlogn)\Theta(n \log n) is always sufficient. For matroids, we show that the expected number can be reduced to O(rlog(n/r))O(r \log (n/r)), where rn/2r \le n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of O(rlogn)O(r \log n), where rr is the size of the optimum matching. For general packing, we show a lower bound of Ω(nloglogn)\Omega(n \log \log n), even when the size of the optimum is r=Θ(logn)r = \Theta(\log n).Comment: 23 pages, 5 figure

    Single Parameter Combinatorial Auctions with Partially Public Valuations

    Full text link
    We consider the problem of designing truthful auctions, when the bidders' valuations have a public and a private component. In particular, we consider combinatorial auctions where the valuation of an agent ii for a set SS of items can be expressed as vif(S)v_if(S), where viv_i is a private single parameter of the agent, and the function ff is publicly known. Our motivation behind studying this problem is two-fold: (a) Such valuation functions arise naturally in the case of ad-slots in broadcast media such as Television and Radio. For an ad shown in a set SS of ad-slots, f(S)f(S) is, say, the number of {\em unique} viewers reached by the ad, and viv_i is the valuation per-unique-viewer. (b) From a theoretical point of view, this factorization of the valuation function simplifies the bidding language, and renders the combinatorial auction more amenable to better approximation factors. We present a general technique, based on maximal-in-range mechanisms, that converts any α\alpha-approximation non-truthful algorithm (α1\alpha \leq 1) for this problem into Ω(αlogn)\Omega(\frac{\alpha}{\log{n}}) and Ω(α)\Omega(\alpha)-approximate truthful mechanisms which run in polynomial time and quasi-polynomial time, respectively

    Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods

    Full text link
    We investigate online algorithms for maximum (weight) independent set on graph classes with bounded inductive independence number like, e.g., interval and disk graphs with applications to, e.g., task scheduling and spectrum allocation. In the online setting, it is assumed that nodes of an unknown graph arrive one by one over time. An online algorithm has to decide whether an arriving node should be included into the independent set. Unfortunately, this natural and practically relevant online problem cannot be studied in a meaningful way within a classical competitive analysis as the competitive ratio on worst-case input sequences is lower bounded by Ω(n)\Omega(n). As a worst-case analysis is pointless, we study online independent set in a stochastic analysis. Instead of focussing on a particular stochastic input model, we present a generic sampling approach that enables us to devise online algorithms achieving performance guarantees for a variety of input models. In particular, our analysis covers stochastic input models like the secretary model, in which an adversarial graph is presented in random order, and the prophet-inequality model, in which a randomly generated graph is presented in adversarial order. Our sampling approach bridges thus between stochastic input models of quite different nature. In addition, we show that our approach can be applied to a practically motivated admission control setting. Our sampling approach yields an online algorithm for maximum independent set with competitive ratio O(ρ2)O(\rho^2) with respect to all of the mentioned stochastic input models. for graph classes with inductive independence number ρ\rho. The approach can be extended towards maximum-weight independent set by losing only a factor of O(logn)O(\log n) in the competitive ratio with nn denoting the (expected) number of nodes

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed

    Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms

    Full text link
    Constrained submodular maximization problems have long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less understood: the first approximation algorithms even for the unconstrainted setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC '09, APPROX '09) show how to approximately maximize non-monotone submodular functions when the constraints are given by the intersection of p matroid constraints; their algorithm is based on local-search procedures that consider p-swaps, and hence the running time may be n^Omega(p), implying their algorithm is polynomial-time only for constantly many matroids. In this paper, we give algorithms that work for p-independence systems (which generalize constraints given by the intersection of p matroids), where the running time is poly(n,p). Our algorithm essentially reduces the non-monotone maximization problem to multiple runs of the greedy algorithm previously used in the monotone case. Our idea of using existing algorithms for monotone functions to solve the non-monotone case also works for maximizing a submodular function with respect to a knapsack constraint: we get a simple greedy-based constant-factor approximation for this problem. With these simpler algorithms, we are able to adapt our approach to constrained non-monotone submodular maximization to the (online) secretary setting, where elements arrive one at a time in random order, and the algorithm must make irrevocable decisions about whether or not to select each element as it arrives. We give constant approximations in this secretary setting when the algorithm is constrained subject to a uniform matroid or a partition matroid, and give an O(log k) approximation when it is constrained by a general matroid of rank k.Comment: In the Proceedings of WINE 201

    Anchoring Bias in Online Voting

    Full text link
    Voting online with explicit ratings could largely reflect people's preferences and objects' qualities, but ratings are always irrational, because they may be affected by many unpredictable factors like mood, weather, as well as other people's votes. By analyzing two real systems, this paper reveals a systematic bias embedding in the individual decision-making processes, namely people tend to give a low rating after a low rating, as well as a high rating following a high rating. This so-called \emph{anchoring bias} is validated via extensive comparisons with null models, and numerically speaking, the extent of bias decays with interval voting number in a logarithmic form. Our findings could be applied in the design of recommender systems and considered as important complementary materials to previous knowledge about anchoring effects on financial trades, performance judgements, auctions, and so on.Comment: 5 pages, 4 tables, 5 figure

    Social welfare and profit maximization from revealed preferences

    Full text link
    Consider the seller's problem of finding optimal prices for her nn (divisible) goods when faced with a set of mm consumers, given that she can only observe their purchased bundles at posted prices, i.e., revealed preferences. We study both social welfare and profit maximization with revealed preferences. Although social welfare maximization is a seemingly non-convex optimization problem in prices, we show that (i) it can be reduced to a dual convex optimization problem in prices, and (ii) the revealed preferences can be interpreted as supergradients of the concave conjugate of valuation, with which subgradients of the dual function can be computed. We thereby obtain a simple subgradient-based algorithm for strongly concave valuations and convex cost, with query complexity O(m2/ϵ2)O(m^2/\epsilon^2), where ϵ\epsilon is the additive difference between the social welfare induced by our algorithm and the optimum social welfare. We also study social welfare maximization under the online setting, specifically the random permutation model, where consumers arrive one-by-one in a random order. For the case where consumer valuations can be arbitrary continuous functions, we propose a price posting mechanism that achieves an expected social welfare up to an additive factor of O(mn)O(\sqrt{mn}) from the maximum social welfare. Finally, for profit maximization (which may be non-convex in simple cases), we give nearly matching upper and lower bounds on the query complexity for separable valuations and cost (i.e., each good can be treated independently)

    Reading Articles Online

    Full text link
    We study the online problem of reading articles that are listed in an aggregated form in a dynamic stream, e.g., in news feeds, as abbreviated social media posts, or in the daily update of new articles on arXiv. In such a context, the brief information on an article in the listing only hints at its content. We consider readers who want to maximize their information gain within a limited time budget, hence either discarding an article right away based on the hint or accessing it for reading. The reader can decide at any point whether to continue with the current article or skip the remaining part irrevocably. In this regard, Reading Articles Online, RAO, does differ substantially from the Online Knapsack Problem, but also has its similarities. Under mild assumptions, we show that any α\alpha-competitive algorithm for the Online Knapsack Problem in the random order model can be used as a black box to obtain an (e+α)C(\mathrm{e} + \alpha)C-competitive algorithm for RAO, where CC measures the accuracy of the hints with respect to the information profiles of the articles. Specifically, with the current best algorithm for Online Knapsack, which is 6.65<2.45e6.65<2.45\mathrm{e}-competitive, we obtain an upper bound of 3.45eC3.45\mathrm{e} C on the competitive ratio of RAO. Furthermore, we study a natural algorithm that decides whether or not to read an article based on a single threshold value, which can serve as a model of human readers. We show that this algorithmic technique is O(C)O(C)-competitive. Hence, our algorithms are constant-competitive whenever the accuracy CC is a constant.Comment: Manuscript of COCOA 2020 pape
    corecore