101 research outputs found
Packing Returning Secretaries
We study online secretary problems with returns in combinatorial packing
domains with candidates that arrive sequentially over time in random order.
The goal is to accept a feasible packing of candidates of maximum total value.
In the first variant, each candidate arrives exactly twice. All arrivals
occur in random order. We propose a simple 0.5-competitive algorithm that can
be combined with arbitrary approximation algorithms for the packing domain,
even when the total value of candidates is a subadditive function. For
bipartite matching, we obtain an algorithm with competitive ratio at least
for growing , and an algorithm with ratio at least
for all . We extend all algorithms and ratios to arrivals
per candidate.
In the second variant, there is a pool of undecided candidates. In each
round, a random candidate from the pool arrives. Upon arrival a candidate can
be either decided (accept/reject) or postponed (returned into the pool). We
mainly focus on minimizing the expected number of postponements when computing
an optimal solution. An expected number of is always
sufficient. For matroids, we show that the expected number can be reduced to
, where is the minimum of the ranks of matroid and
dual matroid. For bipartite matching, we show a bound of , where
is the size of the optimum matching. For general packing, we show a lower
bound of , even when the size of the optimum is .Comment: 23 pages, 5 figure
Single Parameter Combinatorial Auctions with Partially Public Valuations
We consider the problem of designing truthful auctions, when the bidders'
valuations have a public and a private component. In particular, we consider
combinatorial auctions where the valuation of an agent for a set of
items can be expressed as , where is a private single parameter
of the agent, and the function is publicly known. Our motivation behind
studying this problem is two-fold: (a) Such valuation functions arise naturally
in the case of ad-slots in broadcast media such as Television and Radio. For an
ad shown in a set of ad-slots, is, say, the number of {\em unique}
viewers reached by the ad, and is the valuation per-unique-viewer. (b)
From a theoretical point of view, this factorization of the valuation function
simplifies the bidding language, and renders the combinatorial auction more
amenable to better approximation factors. We present a general technique, based
on maximal-in-range mechanisms, that converts any -approximation
non-truthful algorithm () for this problem into
and -approximate truthful
mechanisms which run in polynomial time and quasi-polynomial time,
respectively
Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods
We investigate online algorithms for maximum (weight) independent set on
graph classes with bounded inductive independence number like, e.g., interval
and disk graphs with applications to, e.g., task scheduling and spectrum
allocation. In the online setting, it is assumed that nodes of an unknown graph
arrive one by one over time. An online algorithm has to decide whether an
arriving node should be included into the independent set. Unfortunately, this
natural and practically relevant online problem cannot be studied in a
meaningful way within a classical competitive analysis as the competitive ratio
on worst-case input sequences is lower bounded by .
As a worst-case analysis is pointless, we study online independent set in a
stochastic analysis. Instead of focussing on a particular stochastic input
model, we present a generic sampling approach that enables us to devise online
algorithms achieving performance guarantees for a variety of input models. In
particular, our analysis covers stochastic input models like the secretary
model, in which an adversarial graph is presented in random order, and the
prophet-inequality model, in which a randomly generated graph is presented in
adversarial order. Our sampling approach bridges thus between stochastic input
models of quite different nature. In addition, we show that our approach can be
applied to a practically motivated admission control setting.
Our sampling approach yields an online algorithm for maximum independent set
with competitive ratio with respect to all of the mentioned
stochastic input models. for graph classes with inductive independence number
. The approach can be extended towards maximum-weight independent set by
losing only a factor of in the competitive ratio with denoting
the (expected) number of nodes
Buyback Problem - Approximate matroid intersection with cancellation costs
In the buyback problem, an algorithm observes a sequence of bids and must
decide whether to accept each bid at the moment it arrives, subject to some
constraints on the set of accepted bids. Decisions to reject bids are
irrevocable, whereas decisions to accept bids may be canceled at a cost that is
a fixed fraction of the bid value. Previous to our work, deterministic and
randomized algorithms were known when the constraint is a matroid constraint.
We extend this and give a deterministic algorithm for the case when the
constraint is an intersection of matroid constraints. We further prove a
matching lower bound on the competitive ratio for this problem and extend our
results to arbitrary downward closed set systems. This problem has applications
to banner advertisement, semi-streaming, routing, load balancing and other
problems where preemption or cancellation of previous allocations is allowed
Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms
Constrained submodular maximization problems have long been studied, with
near-optimal results known under a variety of constraints when the submodular
function is monotone. The case of non-monotone submodular maximization is less
understood: the first approximation algorithms even for the unconstrainted
setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC
'09, APPROX '09) show how to approximately maximize non-monotone submodular
functions when the constraints are given by the intersection of p matroid
constraints; their algorithm is based on local-search procedures that consider
p-swaps, and hence the running time may be n^Omega(p), implying their algorithm
is polynomial-time only for constantly many matroids. In this paper, we give
algorithms that work for p-independence systems (which generalize constraints
given by the intersection of p matroids), where the running time is poly(n,p).
Our algorithm essentially reduces the non-monotone maximization problem to
multiple runs of the greedy algorithm previously used in the monotone case.
Our idea of using existing algorithms for monotone functions to solve the
non-monotone case also works for maximizing a submodular function with respect
to a knapsack constraint: we get a simple greedy-based constant-factor
approximation for this problem.
With these simpler algorithms, we are able to adapt our approach to
constrained non-monotone submodular maximization to the (online) secretary
setting, where elements arrive one at a time in random order, and the algorithm
must make irrevocable decisions about whether or not to select each element as
it arrives. We give constant approximations in this secretary setting when the
algorithm is constrained subject to a uniform matroid or a partition matroid,
and give an O(log k) approximation when it is constrained by a general matroid
of rank k.Comment: In the Proceedings of WINE 201
Anchoring Bias in Online Voting
Voting online with explicit ratings could largely reflect people's
preferences and objects' qualities, but ratings are always irrational, because
they may be affected by many unpredictable factors like mood, weather, as well
as other people's votes. By analyzing two real systems, this paper reveals a
systematic bias embedding in the individual decision-making processes, namely
people tend to give a low rating after a low rating, as well as a high rating
following a high rating. This so-called \emph{anchoring bias} is validated via
extensive comparisons with null models, and numerically speaking, the extent of
bias decays with interval voting number in a logarithmic form. Our findings
could be applied in the design of recommender systems and considered as
important complementary materials to previous knowledge about anchoring effects
on financial trades, performance judgements, auctions, and so on.Comment: 5 pages, 4 tables, 5 figure
Social welfare and profit maximization from revealed preferences
Consider the seller's problem of finding optimal prices for her
(divisible) goods when faced with a set of consumers, given that she can
only observe their purchased bundles at posted prices, i.e., revealed
preferences. We study both social welfare and profit maximization with revealed
preferences. Although social welfare maximization is a seemingly non-convex
optimization problem in prices, we show that (i) it can be reduced to a dual
convex optimization problem in prices, and (ii) the revealed preferences can be
interpreted as supergradients of the concave conjugate of valuation, with which
subgradients of the dual function can be computed. We thereby obtain a simple
subgradient-based algorithm for strongly concave valuations and convex cost,
with query complexity , where is the additive
difference between the social welfare induced by our algorithm and the optimum
social welfare. We also study social welfare maximization under the online
setting, specifically the random permutation model, where consumers arrive
one-by-one in a random order. For the case where consumer valuations can be
arbitrary continuous functions, we propose a price posting mechanism that
achieves an expected social welfare up to an additive factor of
from the maximum social welfare. Finally, for profit maximization (which may be
non-convex in simple cases), we give nearly matching upper and lower bounds on
the query complexity for separable valuations and cost (i.e., each good can be
treated independently)
Reading Articles Online
We study the online problem of reading articles that are listed in an
aggregated form in a dynamic stream, e.g., in news feeds, as abbreviated social
media posts, or in the daily update of new articles on arXiv. In such a
context, the brief information on an article in the listing only hints at its
content. We consider readers who want to maximize their information gain within
a limited time budget, hence either discarding an article right away based on
the hint or accessing it for reading. The reader can decide at any point
whether to continue with the current article or skip the remaining part
irrevocably. In this regard, Reading Articles Online, RAO, does differ
substantially from the Online Knapsack Problem, but also has its similarities.
Under mild assumptions, we show that any -competitive algorithm for the
Online Knapsack Problem in the random order model can be used as a black box to
obtain an -competitive algorithm for RAO, where
measures the accuracy of the hints with respect to the information profiles of
the articles. Specifically, with the current best algorithm for Online
Knapsack, which is -competitive, we obtain an upper bound
of on the competitive ratio of RAO. Furthermore, we study a
natural algorithm that decides whether or not to read an article based on a
single threshold value, which can serve as a model of human readers. We show
that this algorithmic technique is -competitive. Hence, our algorithms
are constant-competitive whenever the accuracy is a constant.Comment: Manuscript of COCOA 2020 pape
Relative Worst-Order Analysis: A Survey
Relative worst-order analysis is a technique for assessing the relative
quality of online algorithms. We survey the most important results obtained
with this technique and compare it with other quality measures.Comment: 20 page
- …
