51,617 research outputs found

    Stark effect on the exciton spectra of vertically coupled quantum dots: horizontal field orientation and non-aligned dots

    Full text link
    We study the effect of an electric-field on an electron-hole pair in an asymmetric system of vertically coupled self-assembled quantum dots taking into account their non-perfect alignment. We show that the non-perfect alignment does not qualitatively influence the exciton Stark effect for the electric field applied in the growth direction, but can be detected by application of a perpendicular electric field. We demonstrate that the direction of the shift between the axes of non-aligned dots can be detected by rotation of a weak electric field within the plane of confinement. Already for a nearly perfect alignment the two-lowest energy bright exciton states possess antilocked extrema as function of the orientation angle of the horizontal field which appear when the field is parallel to the direction of the shift between the dot centers

    High-sensitivity microfluidic calorimeters for biological and chemical applications

    Get PDF
    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described

    The difference of boundary effects between Bose and Fermi systems

    Full text link
    In this paper, we show that there exists an essential difference of boundary effects between Bose and Fermi systems both for Dirichlet and Neumann boundary conditions: at low temperatures and high densities the influence of the boundary on the Bose system depends on the temperature but is independent of the density, but for the Fermi case the influence of the boundary is independent of the temperature but depends on the density, after omitting the negligible high-order corrections. We also show that at high temperatures and low densities the difference of the influence of the boundary between Bose and Fermi systems appears in the next-to-leading order boundary contribution, and the leading boundary contribution is independent of the density. Moreover, for calculating the boundary effects at high temperatures and low densities, since the existence of the boundary modification causes the standard virial expansion to be invalid, we introduce a modified virial expansion.Comment: 8 page

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure

    Systematic screening of DMOF-1 with NH2, NO2, Br and azobenzene functionalities for elucidation of carbon dioxide and nitrogen separation properties

    Get PDF
    In this study, dabco MOF-1 (DMOF-1) with four different functional groups (NH2, NO2, Br and azobenzene) has been successfully synthesized through systematic control of the synthesis conditions. The functionalised DMOF-1 is characterized using various analytical techniques including PXRD, TGA and N2 sorption. The effect of the various functional groups on the performance of the MOFs for post-combustion CO2 capture is evaluated. DMOF-1s with polar functional groups are found to have better affinity with CO2 compared with the parent framework as indicated by higher CO2 heat of adsorption. However, imparting steric hindrance to the framework as in Azo-DMOF-1 enhances CO2/N2 selectivity, potentially as a result of lower N2 affinity for the framework
    corecore