96 research outputs found

    Vortex dynamics in superconducting channels with periodic constrictions

    Get PDF
    Vortices confined to superconducting easy flow channels with periodic constrictions exhibit reversible oscillations in the critical current at which vortices begin moving as the external magnetic field is varied. This commensurability scales with the channel shape and arrangement, although screening effects play an important role. For large magnetic fields, some of the vortices become pinned outside of the channels, leading to magnetic hysteresis in the critical current. Some channel configurations also exhibit a dynamical hysteresis in the flux-flow regime near the matching fields

    Picovoltmeter for probing vortex dynamics in a single weak-pinning Corbino channel

    Full text link
    We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied this picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers.Comment: 4 pages, 3 figures, submitted to Review of Scientific Instrument

    Depairing currents in superconducting films of Nb and amorphous MoGe

    Get PDF
    We report on measuring the depairing current J_{dp} in thin superconducting films as a function of temperature. The main difficulties in such measurements are that heating has to be avoided, either due to contacts, or to vortex flow. The latter is almost unavoidable since the sample cross-section is usually larger than the superconducting coherence length \xi_s and the magnetic field penetration depth \lambda_s. On the other hand, vortex flow is helpful since it homogenizes the distribution of the current across the sample. We used a pulsed current method, which allows to overcome the difficulties caused by dissipation and measured the depairing current in films of thin polycrystalline Nb (low \lambda_s, low specific resistance \rho) and amorphous Mo_{0.7}Ge_{0.3} (high \lambda_s, high \rho), structured in the shape of bridges of various width. The experimental values of J_{dp} for different bridge dimensions are compared with theoretical predictions by Kupriyanov and Lukichev for dirty limit superconductors. For the smallest samples we find a very good agreement with theory, over essentially the whole temperature interval below the superconducting critical temperature.Comment: 5 pages, 6 figure

    Depth dependent spin dynamics of canonical spin glass films: A low-energy muon spin rotation study

    Full text link
    We have performed depth dependent muon spin rotation/relaxation studies of the dynamics of single layer films of {\it Au}Fe and {\it Cu}Mn spin glasses as a function of thickness and of its behavior as a function of distance from the vacuum interface (5-70 nm). A significant reduction in the muon spin relaxation rate as a function of temperature with respect to the bulk material is observed when the muons are stopped near (5-10 nm) the surface of the sample. A similar reduction is observed for the whole sample if the thickness is reduced to e.g. 20 nm and less. This reflects an increased impurity spin dynamics (incomplete freezing) close to the surface although the freezing temperature is only modestly affected by the dimensional reduction

    Superconducting properties of Nb thin films deposited on porous silicon templates

    Full text link
    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependence of the superconducting resistive transition width at H=1 Tesla. This field value is much higher than typical matching fields in perforated superconductors, as a consequence of the small interpore distance.Comment: accepted for publication on Journal of Applied Physic

    The surface structure of SrTiO 3

    Get PDF
    Quantum Matter and Optic

    Proximity effects in the superconductor / heavy fermion bilayer system Nb / CeCu_6

    Get PDF
    We have investigated the proximity effect between a superconductor (Nb) and a 'Heavy Fermion' system (CeCu_6) by measuring critical temperatures TcT_c and parallel critical fields H_{c2}^{\parallel}(T) of Nb films with varying thickness deposited on 75 nm thick films of CeCu_6, and comparing the results with the behavior of similar films deposited on the normal metal Cu. For Nb on CeCu_6 we find a strong decrease of T_c with decreasing Nb thickness and a finite critical thickness of the order of 10 nm. Also, dimensional crossovers in H_{c2}^{\parallel}(T) are completely absent, in strong contrast with Nb/Cu. Analysis of the data by a proximity effect model based on the Takahashi-Tachiki theory shows that the data can be explained by taking into account both the high effective mass (or low electronic diffusion constant), {\it and} the large density of states at the Fermi energy which characterize the Heavy Fermion metal.Comment: 7 pages, 2 figure. Manuscript has been submitted to a refereed journa

    Depairing currents in the superconductor/ferromagnet proximity system Nb/Fe

    Get PDF
    We have investigated the behaviour of the depairing current J_{dp} in ferromagnet/superconductor/ferromagnet (F/S/F) trilayers as function of the thickness d_s of the superconducting layers. Theoretically, J_{dp} depends on the superconducting order parameter or the pair density function, which is not homogeneous across the film due to the proximity effect. We use a proximity effect model with two parameters (proximity strength and interface transparency), which can also describe the dependence of the superconducting transition temperature T_c on d_s. We compare the computations with the experimentally determined zero-field critical current J_{c0} of small strips (typically 5~ \mu m wide) of Fe/Nb/Fe trilayers with varying thickness d_{Nb} of the Nb layer. Near T_c the temperature dependence J_{c0}(T) is in good agreement with the expected behaviour, which allows extrapolation to T = 0. Both the absolute values of J_{c0}(0) and the dependence on d_{Nb} agree with the expectations for the depairing current. We conclude that J_{dp} is correctly determined, notwithstanding the fact that the strip width is larger than both the superconducting penetration depth and the superconducting coherence length, and that J_{dp}(d_s) is correctly described by the model.Comment: 10 pages, 5 figures, submitted to PR
    • …
    corecore