959 research outputs found

    General theory for decoy-state quantum key distribution with arbitrary number of intensities

    Full text link
    We develop a general theory for quantum key distribution (QKD) in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of decoy intensities. For this purpose, generalizing Wang's expansion, we derive a convex expansion of the phase-randomized coherent state. We also numerically check that the asymptotic key generation rates are almost saturated when the number of decoy intensities is three.Comment: This manuscript has been revised extensivel

    Alternative schemes for measurement-device-independent quantum key distribution

    Full text link
    Practical schemes for measurement-device-independent quantum key distribution using phase and path or time encoding are presented. In addition to immunity to existing loopholes in detection systems, our setup employs simple encoding and decoding modules without relying on polarization maintenance or optical switches. Moreover, by employing a modified sifting technique to handle the dead-time limitations in single-photon detectors, our scheme can be run with only two single-photon detectors. With a phase-postselection technique, a decoy-state variant of our scheme is also proposed, whose key generation rate scales linearly with the channel transmittance.Comment: 30 pages, 5 figure

    Challenges to creating primary care teams in a public sector health centre: a co-operative inquiry

    Get PDF
    Background: Effective teamwork between doctors and clinical nurse practitioners (CNP) is essential to the provision of quality primary care in the South African context. The Worcester Community Health Centre (CHC) is situated in a large town and offers primary care to the rural Breede Valley Sub-District of the Western Cape. The management of the CHC decided to create dedicated practice teams offering continuity of care, family-orientated care, and the integration of acute and chronic patients. The teams depended on effective collaboration between the doctors and the CNPs. Methods: A co-operative inquiry group, consisting of two facility managers, an administrator, and medical and nursing staff, met over a period of nine months and completed three cycles of planning, action, observation and reflection. The inquiry focused on the question of how more effective teams of doctors and clinical nurse practitioners offering clinical care could be created within a typical CHC. Results: The CHC established three practice teams, but met with limited success in maintaining the teams over time. The group found that, in order for teams to work, the following are needed: A clear and shared vision and mission amongst the staff. The vision was championed by one or two leaders rather than developed collaboratively by the staff. Continuity of care was supported by the patients and doctors, but the CNPs felt more ambivalent. Family-orientated care within practices met with limited success. Integration of care was hindered by physical infrastructure and the assumptions regarding the care of "chronics". Enhanced practitioner-patient relationships were reported by the two teams that had staff consistently available. Significant changes in the behaviour and roles of staff. Some doctors perceived the nurse as an "assistant" who could be called on to run errands or perform tasks. Doctors perceived their own role as that of comprehensively managing patients in a consultation, while the CNPs still regarded themselves as nurses who should rotate to other duties and perform a variety of tasks, thus oscillating between the role of practitioner and nurse. The doctors felt responsible for seeing a certain number of patients in the time they were available, while the CNPs felt responsible for getting all the patients through the CHC. The doctors did not create space for mentoring the CNPs, who were often seen as an intrusion and a threat to patient privacy and confidentiality when requesting a consultation. For the CNPs, however, the advantage of practice teams was considered to be greater accessibility to the doctor for joint consultation. The identification of doctors and CNPs with each other as part of a functioning team did not materialise. Effective management of the change process implied the need to ensure sufficient staff were available to allow all teams to function equally throughout the day, to be cognisant of the limitations of the building design, to introduce budgeting that supported semi-autonomous practice teams and to ensure that the staff were provided with ongoing opportunities for dialogue and communication. The implications of change for the whole system should be considered, and not just that for the doctors and nurses. Conclusion: Key lessons learnt included the need to engage with a transformational leadership style, to foster dialogical openness in the planning process and to address differences in understanding of roles and responsibilities between the doctors and the CNPs. The unreliable presence of doctors within the practice team, due to their hospital duties, was a critical factor in the breakdown of the teams. The CHC plans to further develop practice teams, to learn from the lessons so far and to continue with the co-operative inquiry

    Does Social Presence or the Potential for Interaction reduce Social Gaze in Online Social Scenarios? Introducing the "Live Lab" paradigm.

    Get PDF
    Research has shown that people’s gaze is biased away from faces in the real-world but towards them when they are viewed onscreen. Non-equivalent stimulus conditions may have represented a confound in this research however, as participants viewed onscreen stimuli as pre-recordings where interaction was not possible, compared to real-world stimuli which were viewed in real-time where interaction was possible. We assessed the independent contributions of online social presence and ability for interaction on social gaze by developing the “live lab” paradigm. Participants in three groups (N = 132) viewed a confederate either as a) a live webcam stream where interaction was not possible (one-way), b) a live webcam stream where an interaction was possible (two-way) or c) as a prerecording. Potential for interaction, rather than online social presence, was the primary influence on gaze behaviour: Participants in the pre-recorded and one-way conditions looked more to the face than those in the two-way condition, particularly when the confederate made “eye contact”. Fixation durations to the face were shorter when the scene was viewed live, particularly during a bid for eye contact Our findings support the dual function of gaze, but suggest that online social presence alone is not sufficient to activate social norms of civil inattention. Implications for the reinterpretation of previous research are discussed

    Secrecy extraction from no-signalling correlations

    Get PDF
    Quantum cryptography shows that one can guarantee the secrecy of correlation on the sole basis of the laws of physics, that is without limiting the computational power of the eavesdropper. The usual security proofs suppose that the authorized partners, Alice and Bob, have a perfect knowledge and control of their quantum systems and devices; for instance, they must be sure that the logical bits have been encoded in true qubits, and not in higher-dimensional systems. In this paper, we present an approach that circumvents this strong assumption. We define protocols, both for the case of bits and for generic dd-dimensional outcomes, in which the security is guaranteed by the very structure of the Alice-Bob correlations, under the no-signalling condition. The idea is that, if the correlations cannot be produced by shared randomness, then Eve has poor knowledge of Alice's and Bob's symbols. The present study assumes, on the one hand that the eavesdropper Eve performs only individual attacks (this is a limitation to be removed in further work), on the other hand that Eve can distribute any correlation compatible with the no-signalling condition (in this sense her power is greater than what quantum physics allows). Under these assumptions, we prove that the protocols defined here allow extracting secrecy from noisy correlations, when these correlations violate a Bell-type inequality by a sufficiently large amount. The region, in which secrecy extraction is possible, extends within the region of correlations achievable by measurements on entangled quantum states.Comment: 23 pages, 4 figure

    Key distillation from quantum channels using two-way communication protocols

    Get PDF
    We provide a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We obtain a necessary and sufficient condition to distill a secret key using this type of schemes for Pauli qubit channels and generalized Pauli channels in higher dimension. Our results can be applied to standard protocols such as BB84 or six-state, giving a critical error rate of 20% and 27.6%, respectively. We explore several possibilities to enlarge these bounds, without any improvement. These results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.Comment: 21 page

    Symmetry implies independence

    Get PDF
    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.Comment: LaTeX, contains 4 figure

    Device-independent quantum key distribution secure against collective attacks

    Full text link
    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. We present here in detail the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98, 230501 (2008)]. This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit the no-signalling principle only), but only holds again collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically at each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.Comment: 25 pages, 3 figure

    Wettability characteristics of an Al2O3/SiO2-based ceramic modified with CO2, Nd:YAG, excimer and high-power diode lasers

    Get PDF
    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of an Al2O3/SiO2 based ceramic was found to effect significant changes in the wettability characteristics of the material. It was observed that interaction with CO2, Nd:YAG and HPDL radiation reduced the enamel contact angle from 1180 to 310, 340 and 330 respectively. In contrast, interaction with excimer laser radiation resulted an increase in the contact angle to 1210. Such changes were identified as being due to: (i) the melting and partial vitrification of the Al2O3/SiO2 based ceramic surface as a result of interaction with CO2, Nd:YAG HPDL radiation. (ii) the surface roughness of the Al2O3/SiO2 based ceramic increasing after interaction with excimer laser radiation. (iii) the surface oxygen content of the Al2O3/SiO2 based ceramic increasing after interaction with CO2, Nd:YAG and HPDL radiation. The work has shown that the wettability characteristics of the Al2O3/SiO2 based ceramic could be controlled and/or modified with laser surface treatment. In particular, whether the laser radiation had the propensity to cause surface melting. However, a wavelength dependance of the change of the wetting properties could not be deduced from the findings of this work

    The Parity Bit in Quantum Cryptography

    Get PDF
    An nn-bit string is encoded as a sequence of non-orthogonal quantum states. The parity bit of that nn-bit string is described by one of two density matrices, ρ0(n)\rho_0^{(n)} and ρ1(n)\rho_1^{(n)}, both in a Hilbert space of dimension 2n2^n. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum crytography in the presence of noise.Comment: 19 pages, RevTe
    corecore