1,268 research outputs found

    Weakest-link failure prediction for ceramics

    Get PDF
    Weakest-link failure prediction for ceramic components is usually based on strength data obtained from 3- and 4-point bend tests. However, in the route from test specimen to actual component several pitfalls are encountered. Firstly, the bend tests themselves do have their problems. Secondly, there is the problem of the interpretation of the uniaxial strength data in terms of a failure criterium for multiaxial stress states, for which at this juncture no universally applicable model is available. In this contribution the difficulties encountered will be summarized. Besides alternatives will be mentioned which are based on microstructural insight and anisotropic deformation models

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay β\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=0.11966±0.000890.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=1.275900.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    Anomalous Dynamics of Forced Translocation

    Full text link
    We consider the passage of long polymers of length N through a hole in a membrane. If the process is slow, it is in principle possible to focus on the dynamics of the number of monomers s on one side of the membrane, assuming that the two segments are in equilibrium. The dynamics of s(t) in such a limit would be diffusive, with a mean translocation time scaling as N^2 in the absence of a force, and proportional to N when a force is applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers (more easily when forced), and provide lower bounds for the translocation time by comparison to unimpeded motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and point to anomalous (sub-diffusive) character of translocation dynamics. This is explicitly verified by numerical simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end leads to much longer times than when a chemical potential difference is applied across the membrane. The bounds in these cases grow as N^2 and N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of the radius of gyration to N. Our simulations demonstrate that the actual translocation times scale in the same manner as the bounds, although influenced by strong finite size effects which persist even for the longest polymers that we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure

    First direct constraints on Fierz interference in free neutron β\beta decay

    Full text link
    Precision measurements of free neutron β\beta-decay have been used to precisely constrain our understanding of the weak interaction. However the neutron Fierz interference term bnb_n, which is particularly sensitive to Beyond-Standard-Model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding bn=0.067±0.005stat0.061+0.090sysb_n = 0.067 \pm 0.005_{\text{stat}} {}^{+0.090}_{- 0.061}{}_{\text{sys}}, consistent with the Standard Model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the beta spectrometer energy response

    Atomistic modelling of large-scale metal film growth fronts

    Full text link
    We present simulations of metallization morphologies under ionized sputter deposition conditions, obtained by a new theoretical approach. By means of molecular dynamics simulations using a carefully designed interaction potential, we analyze the surface adsorption, reflection, and etching reactions taking place during Al physical vapor deposition, and calculate their relative probability. These probabilities are then employed in a feature-scale cellular-automaton simulator, which produces calculated film morphologies in excellent agreement with scanning-electron-microscopy data on ionized sputter deposition.Comment: RevTeX 4 pages, 2 figure

    Uncoupling growth from phosphorus uptake in Lemna: Implications for use of duckweed in wastewater remediation and P recovery in temperate climates

    Get PDF
    Phosphorus (P) is an essential nutrient for crop growth and the second most limiting after N. Current supplies rely on P‐rich rocks that are unevenly distributed globally and exploited unsustainably, leading to concerns about future availability and therefore food security. Duckweeds (Lemnaceae) are aquatic macrophytes used in wastewater remediation with the potential for nutrient recycling as feed or fertilizer. The use of duckweeds in this way is confined to tropical regions as it has previously been assumed that growth in the colder seasons of the temperate regions would be insufficient. In this study, the combined effects of cool temperatures and short photoperiods on growth and P uptake and accumulation in Lemna were investigated under controlled laboratory conditions. Growth and P accumulation in Lemna can be uncoupled, with significant P removal from the medium and accumulation within the plants occurring even at 8°C and 6‐hr photoperiods. Direct measurement of radiolabeled phosphate uptake confirmed that while transport is strongly temperature dependent, uptake can still be measured at 5°C. Prior phosphate starvation of the duckweed and use of nitrate as the nitrogen (N) source also greatly increased the rate of P removal and in‐cell accumulation. These results form the basis for further examination of the feasibility of duckweed‐based systems for wastewater treatment and P recapture in temperate climates, particularly in small, rural treatment works

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λgAgV=1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λgAgV=1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio
    corecore