82 research outputs found

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide

    Nanoscale dynamics by short-wavelength four wave mixing experiments

    Get PDF
    Multi-dimensional spectroscopies with vacuum ultraviolet (VUV)/x-ray free-electron laser (FEL) sources would open up unique capabilities for dynamic studies of matter at the femtosecond-nanometer time-length scales. Using sequences of ultrafast VUV/x-ray pulses tuned to electron transitions enables element-specific studies of charge and energy flow between constituent atoms, which embody the very essence of chemistry and condensed matter physics. A remarkable step forward towards this goal would be achieved by extending the four wave mixing (FWM) approach at VUV/soft x-ray wavelengths, thanks to the use of fully coherent sources, such as seeded FELs. Here, we demonstrate the feasibility of VUV/soft x-ray FWM at Fermi@Elettra and we discuss its applicability to probe ultrafast intramolecular dynamics, charge injection processes involving metal oxides and electron correlation and magnetism in solid materials. The main advantage in using VUV/soft x-ray wavelengths is in adding element-sensitivity to FWM methods by exploiting the core resonances of selected atoms in the sample

    COMMISIONING OF THE FERMI@ELETTRA LASER HEATER*

    Get PDF
    Abstract The linac of the FERMI seeded free electron laser includes a laser heater to control the longitudinal microbunching instability, which otherwise is expected to degrade the quality of high brightness electron beam sufficiently to reduce the FEL power. The laser heater consists of a short undulator located in a small magnetic chicane through which an external laser pulse enters to modulate the electron beam energy both temporally and spatially. This modulation, which varies on the scale of the laser wavelength, together with the effective R52 transport term of the chicane increases the incoherent energy spread (i.e., e-beam heating). We present the first commissioning results of this system, and its impact both upon the electron beam phase space, and upon the FEL output intensity and quality
    corecore