9,735 research outputs found

    Hypervelocity impact facility for simulating materials exposure to impact by space debris

    Get PDF
    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry

    Perception of nonnative tonal contrasts by Mandarin-English and English-Mandarin sequential bilinguals

    Full text link
    This study examined the role of acquisition order and crosslinguistic similarity in influencing transfer at the initial stage of perceptually acquiring a tonal third language (L3). Perception of tones in Yoruba and Thai was tested in adult sequential bilinguals representing three different first (L1) and second language (L2) backgrounds: L1 Mandarin-L2 English (MEBs), L1 English-L2 Mandarin (EMBs), and L1 English-L2 intonational/non-tonal (EIBs). MEBs outperformed EMBs and EIBs in discriminating L3 tonal contrasts in both languages, while EMBs showed a small advantage over EIBs on Yoruba. All groups showed better overall discrimination in Thai than Yoruba, but group differences were more robust in Yoruba. MEBs’ and EMBs’ poor discrimination of certain L3 contrasts was further reflected in the L3 tones being perceived as similar to the same Mandarin tone; however, EIBs, with no knowledge of Mandarin, showed many of the same similarity judgments. These findings thus suggest that L1 tonal experience has a particularly facilitative effect in L3 tone perception, but there is also a facilitative effect of L2 tonal experience. Further, crosslinguistic perceptual similarity between L1/L2 and L3 tones, as well as acoustic similarity between different L3 tones, play a significant role at this early stage of L3 tone acquisition.Published versio

    QSO Absorbing Galaxies at z<~1: Deep Imaging and Spectroscopy in the Field of 3C 336

    Get PDF
    We present very deep WFPC2 images and FOS spectroscopy from the Hubble Space Telescope (HST) together with numerous supporting ground-based observations of the field of the quasar 3C 336 (zem=0.927z_{em}=0.927). The observations are designed to investigate the nature of galaxies producing metal line absorption systems in the spectrum of the QSO. Along a single line of sight, we find at least 6 metal line absorption systems (of which 3 are newly discovered) ranging in redshift from 0.317 to 0.892. Through an extensive program of optical and IR imaging, QSO spectroscopy, and faint galaxy spectroscopy, we have identified 5 of the 6 metal line absorption systems with luminous (L_K > 0.1 L*_K) galaxies. These have morphologies ranging from very late-type spiral to S0, and exhibit a wide range of inclination and position angles with respect to the QSO sightline. The only unidentified absorber, despite our intensive search, is a damped Lyman α\alpha system at zabs=0.656z_{abs}=0.656. Analysis of the absorption spectrum suggests that the metal abundances ([Fe/H]=−1.2=-1.2) in this system are similar to those in damped systems at z∌2z \sim 2, and to the two other damped systems for which abundances have been determined at z<1z <1. We have found no examples of intrinsically faint galaxies (L<0.1L∗L < 0.1 L^{\ast}) at small impact parameters that might have been missed as absorber candidates in our previous ground-based imaging and spectroscopic programs on MgII absorbing galaxies. There are no bright galaxies (L > 0.1 L_K) within 50h^{-1} kpc which do not produce detectable metal lines (of Mg II 2796, 2803 and/or C IV 1548, 1550) in the QSO spectrum. All of these results generally support the inferences which we have previously reached from a larger survey for absorption-selected galaxies at z\simlt 1.Comment: 32 pages latex (AAS v4.0 style). 8 Postscript figures (including HST plate) available at ftp://astro.caltech.edu/users/ccs/3c336_figs.ps.gz . Submitted to Ap

    Pair creation in transport equations using the equal-time Wigner function

    Full text link
    Based on the equal-time Wigner function for the Klein-Gordon field, we discuss analytically the mechanism of pair creation in a classical electromagnetic field including back-reaction. It is shown that the equations of motion for the Wigner function can be reduced to a variable-frequency oscillator. The pair-creation rate results then from a calculation analogous to barrier penetration in nonrelativistic quantum mechanics. The Wigner function allows one to utilize this treatment for the formulation of an effective transport theory for the back-reaction problem with a pair-creation source term including Bose enhancement.Comment: 19 pages, LaTeX, UFTP 316/199
    • 

    corecore