544 research outputs found
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed
Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition
BACKGROUND: In the developing brain, serotonin (5HT) systems are among the most sensitive to disruption by organophosphates. OBJECTIVES: We exposed neonatal rats to daily doses of diazinon or parathion on postnatal days (PND)1–4 and evaluated 5HT receptors and the 5HT transporter in brainstem and forebrain on PND5, focusing on doses of each agent below the maximum tolerated dose and spanning the threshold for cholinesterase inhibition: 0.5, 1, or 2 mg/kg for diazinon, and 0.02, 0.05, and 0.1 mg/kg for parathion. RESULTS: Diazinon evoked up-regulation of 5HT(1A) and 5HT(2) receptor expression even at doses devoid of effects on cholinesterase activity, a pattern similar to that seen earlier for another organophosphate, chlorpyrifos. In contrast, parathion decreased 5HT(1A) receptors, again at doses below those required for effects on cholinesterase. The two agents also differed in their effects on the 5HT transporter. Diazinon evoked a decrease in the brainstem and an increase in the forebrain, again similar to that seen for chlorpyrifos; this pattern is typical of damage of nerve terminals and reactive sprouting. Parathion had smaller, nonsignificant effects. CONCLUSIONS: Our results buttress the idea that, in the developing brain, the various organophosphates target specific neurotransmitter systems differently from each other and without the requirement for cholinesterase inhibition, their supposed common mechanism of action
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Providing social support for underrepresented racial and ethnic minority phd students in the biomedical sciences:a career coaching model
Improvement in the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions has been unsatisfactory. Although this is a complex problem, one key issue is that graduate students often rely on research mentors for career-related support, the effectiveness of which can be variable. We present results from a novel academic career “coaching” intervention, one aim of which was to provide supplementary social support for PhD students, particularly those from underrepresented backgrounds. Coaching was delivered both within small groups and on an individual basis, with a diverse group of coaches and students coming from many universities. Coaches were provided with additional diversity training. Ninety-six semistructured interviews with 33 URM students over 3 years were analyzed using a qualitative framework approach. For most of the URM PhD students, coaching provided social support in the form of emotional, informational, and appraisal support. Coaching groups provided a noncompetitive environment and “community of support” within which students were able to learn from one another’s experiences and discuss negative and stressful experiences related to their graduate school, lab, or career plans. This coached peer group model is capable of providing the social support that many URM students do not find at their home universities
S100B and homocysteine in the acute alcohol withdrawal syndrome
Elevations of serum homocysteine levels are a consistent finding in alcohol addiction. Serum S100B levels are altered in different neuropsychiatric disorders but not well investigated in alcohol withdrawal syndromes. Because of the close connection of S100B to ACTH and glutamate secretion that both are involved in neurodegeneration and symptoms of alcoholism the relationship of S100B and homocysteine to acute withdrawal variables has been examined. A total of 22 male and 9 female inpatients (mean age 46.9 ± 9.7 years) with an ICD-10 diagnosis of alcohol addiction without relevant affective comorbidity were examined on admission and after 24, 48, and 120 h during withdrawal. S100B and homocysteine levels in serum were collected, and severity of withdrawal symptoms (AWS-scale), applied withdrawal medication, initial serum ethanol levels and duration of addiction were recorded. Serum S100B and homocysteine levels declined significantly (P < .05) over time. Both levels declined with withdrawal syndrome severity. Females showed a trend to a more intense decline in serum S100B levels compared to males at day 5 (P = .06). Homocysteine levels displayed a negative relationship to applied amount of clomethiazole (P < .05) and correlated with age of onset of addiction. No withdrawal seizures were recorded during the trial. As it is known for homocysteine, S100B revealed to decline rapidly over withdrawal treatment in alcoholism. This effect is more pronounced in female patients. S100B could be of relevance in the neurobiology of alcohol withdrawal syndromes. It may be indirectly related to the level of stress level or glutamatergic activity during alcohol withdrawal
Differential Regulation of the Excitability of Prefrontal Cortical Fast-Spiking Interneurons and Pyramidal Neurons by Serotonin and Fluoxetine
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity
Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning.
Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior.This work was supported by Medical Research Council Grants (G0701500; G0802729), a 503 Wellcome Trust Programme Grant (grant number 089589/Z/09/Z), and by a Core Award 504 from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical 505
21
Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). RLB was supported 506 by a studentship from the Medical Research Council. JA was supported by a Fellowship from 507 the Swedish Research Council (350-2012-230). BJ was supported by Fellowships from the 508 AXA Research Fund and the National Health and Medical Research Council of Australia. 509 Financial support from the Fredrik and Ingrid Thuring Foundation is also acknowledged.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/npp/journal/vaop/ncurrent/full/npp2014335a.html
An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology
BACKGROUND: In humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals. DISCUSSION: We hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone. SUMMARY: Serotonergic mediation of estrogen has important clinical implications and warrants further evaluation
Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity
Background\ud
The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.\ud
\ud
Results\ud
5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.\ud
\ud
Conclusions\ud
Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC
- …