390 research outputs found

    Special lagrangian fibrations on flag variety F3F^3

    Full text link
    One constructs lagrangian fibrations on the flag variety F3F^3 and proves that the fibrations are special.Comment: 19 page

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)

    Period- and mirror-maps for the quartic K3

    Full text link
    We study in detail mirror symmetry for the quartic K3 surface in P3 and the mirror family obtained by the orbifold construction. As explained by Aspinwall and Morrison, mirror symmetry for K3 surfaces can be entirely described in terms of Hodge structures. (1) We give an explicit computation of the Hodge structures and period maps for these families of K3 surfaces. (2) We identify a mirror map, i.e. an isomorphism between the complex and symplectic deformation parameters, and explicit isomorphisms between the Hodge structures at these points. (3) We show compatibility of our mirror map with the one defined by Morrison near the point of maximal unipotent monodromy. Our results rely on earlier work by Narumiyah-Shiga, Dolgachev and Nagura-Sugiyama.Comment: 29 pages, 3 figure

    Symplectic cohomology and q-intersection numbers

    Get PDF
    Given a symplectic cohomology class of degree 1, we define the notion of an equivariant Lagrangian submanifold. The Floer cohomology of equivariant Lagrangian submanifolds has a natural endomorphism, which induces a grading by generalized eigenspaces. Taking Euler characteristics with respect to the induced grading yields a deformation of the intersection number. Dehn twists act naturally on equivariant Lagrangians. Cotangent bundles and Lefschetz fibrations give fully computable examples. A key step in computations is to impose the "dilation" condition stipulating that the BV operator applied to the symplectic cohomology class gives the identity. Equivariant Lagrangians mirror equivariant objects of the derived category of coherent sheaves.Comment: 32 pages, 9 figures, expanded introduction, added details of example 7.5, added discussion of sign

    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator

    Get PDF
    We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustratethe theoretical results

    Dense Motion Estimation for Smoke

    Full text link
    Motion estimation for highly dynamic phenomena such as smoke is an open challenge for Computer Vision. Traditional dense motion estimation algorithms have difficulties with non-rigid and large motions, both of which are frequently observed in smoke motion. We propose an algorithm for dense motion estimation of smoke. Our algorithm is robust, fast, and has better performance over different types of smoke compared to other dense motion estimation algorithms, including state of the art and neural network approaches. The key to our contribution is to use skeletal flow, without explicit point matching, to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this paper we describe our algorithm in greater detail, and provide experimental evidence to support our claims.Comment: ACCV201

    Constructions of generalized complex structures in dimension four

    Full text link
    Four-manifold theory is employed to study the existence of (twisted) generalized complex structures. It is shown that there exist (twisted) generalized complex structures that have more than one type change loci. In an example-driven fashion, (twisted) generalized complex structures are constructed on a myriad of four-manifolds, both simply and non-simply connected, which are neither complex nor symplectic
    corecore