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ON KHOVANOV-SEIDEL QUIVER ALGEBRAS AND BORDERED

FLOER HOMOLOGY

DENIS AUROUX, J. ELISENDA GRIGSBY, AND STEPHAN M. WEHRLI

Abstract. We discuss a relationship between Khovanov- and Heegaard Floer-type ho-

mology theories for braids. Explicitly, we define a filtration on the bordered Heegaard-
Floer homology bimodule associated to the double-branched cover of a braid and show

that its associated graded bimodule is equivalent to a similar bimodule defined by Kho-

vanov and Seidel.

1. Introduction

The low-dimensional topology community has been energized in recent years by the in-
troduction of a wealth of so-called homology-type invariants. These invariants are defined by
associating to a topological object (for example, a link or a 3–manifold) an abstract chain
complex whose quasi-isomorphism class–hence, homology–is an invariant of the object.

One obtains such invariants from two apparently unrelated points of view:

(1) algebraically, via the higher representation theory of quantum groups, and
(2) geometrically/analytically, via symplectic geometry and gauge theory.

Although the invariants themselves share a number of formal properties, finding explicit
connections between the two viewpoints has proven challenging.

A striking success in this direction is a result of Ozsváth and Szabó relating the Z/2Z
versions of Khovanov homology and Heegaard Floer homology:

Theorem 1.1. [31] Let L ⊂ S3 be a link and L ⊂ S3 denote its mirror. There exists a

spectral sequence whose E2 term is K̃h(L), the reduced Khovanov homology of the mirror of

L, and whose E∞ term is ĤF (Σ(L)), the Heegaard-Floer homology of the double-branched
cover of L.

This result has generated applications in a number of directions (see, e.g., [32], [41], [7]).
It also served as inspiration for Kronheimer and Mrowka’s construction of an analogous
spectral sequence from Khovanov homology to a version of instanton knot homology, yielding
a proof that Khovanov homology detects the unknot [25].

The aim of the present paper is to move toward a more “atomic” understanding of
the Ozsváth-Szabó spectral sequence and its sutured generalizations ([33, 13, 11, 14]). In
particular, viewing a link in S3 as the closure of a braid, we can ask whether there are appro-
priate Khovanov-type (algebraic) and Heegaard-Floer-type (geometric/analytic) invariants
associated to braids such that the Ozsváth-Szabó spectral sequence emerges as an algebraic
consequence of a relationship between these invariants.
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2 DENIS AUROUX, J. ELISENDA GRIGSBY, AND STEPHAN M. WEHRLI

Such a description would not only be of theoretical interest. Ozsváth-Szabó’s original
description of the above spectral sequence involves holomorphic polygon counts in Heegaard
multi-diagrams. Since these counts are tricky to carry out in practice, finding ways to
perform them combinatorially should prove valuable, especially in light of subsequent work
of Baldwin [6] (see also L. Roberts [34]) proving that the terms of the Ozsváth-Szabó spectral
sequence are themselves link invariants.

We should at this point remark that recent work of Lipshitz-Ozsváth-Thurston, in [30]
and its sequel, does precisely this. In addition, Szabó [40] has constructed a combinato-
rial filtration on the Khovanov cube of resolutions associated to a link diagram that he
conjectures yields the original Ozsváth-Szabó spectral sequence.

In the present paper, we address a slightly different question from a substantially different
direction. First, we focus not on the original Ozsváth-Szabó spectral sequence but rather
on (a direct summand of) one of its sutured generalizations [33, 11]. Second, we take as
our starting point a paper of Khovanov-Seidel [21], which explores a concrete instance of
Kontsevich’s homological mirror symmetry conjecture [24]. The constructions found there,
when combined with work of the first author [3], lead naturally to a new view on the filtered
complexes appearing in [33, 11].

Explicitly, given a braid σ ⊂ D2 × I, we consider the closure of the braid, not in the
three-ball but in the solid torus (viewed as a product sutured annulus, A×I). Associated to
the resulting annular link are Khovanov-type and Heegaard-Floer-type invariants connected
by a sutured spectral sequence [1, 33, 11] that splits along an extra grading measuring
“wrapping” around the S1 factor.1 In [4], building on work in [28], we obtain a similar
spectral sequence in the “next-to-top” graded piece as the Hochschild homology of a filtered
A∞ bimodule associated to the original braid, σ.

The purpose of the present paper is to give an explicit combinatorial construction of
this filtered A∞ bimodule. Informally, the resulting spectral sequence interpolates between
the “open” Khovanov- and Heegaard-Floer-type invariants of a braid σ ⊂ D2 × I just as
the sutured spectral sequence interpolates between the analogous “closed” invariants of its
closure, σ̂ ⊂ A× I.

More precisely:

(1) On the algebraic side, we show how to use ideas of Khovanov-Seidel in [21] to con-
struct an A∞ bimodule, MKh

σ , via Yoneda imbedding of a distinguished collection
of objects in the derived category of a quiver algebra.

(2) On the geometric/analytic side, we use the bordered Floer homology package of
Lipshitz-Ozsváth-Thurston in [27, 28] to construct an A∞ bimodule, MHF

σ , the 1–
strand CFDA bimodule associated to the mapping class σ̂ obtained as the double-
branched cover of σ ⊂ D2 × I.

Letting 1 denote the identity braid of the same index as σ, we prove:

Theorem 6.1. There exists a filtration onMHF
σ whose associated graded bimodule is quasi-

isomorphic, as an ungraded A∞ bimodule over
{

gr(MHF
1

) =MKh
1

}
, to MKh

σ .

In particular, for each braid there exists a spectral sequence connecting the Khovanov-
Seidel (algebraic) bimodule to the Lipshitz-Ozsváth-Thurston (geometric/analytic) one.
Moreover, these “open” spectral sequences can be defined without reference to holomor-
phic curves. In fact, our construction is based on a remarkably simple toy model (Lemma

1This extra grading has a natural interpretation on the Khovanov side in terms of Uq(sl2) weight space
decompositions and on the Heegaard-Floer side in terms of relative Spinc structures. See [12] for more

details.
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5.3): a filtered complex interpolating between the cohomology of S1 and the cohomology
of S0 (both over Z/2Z) coming from a Z/2Z–equivariant cochain complex for S1. This toy
model was, in turn, inspired by work of Seidel and Smith [38].

It is worth noting that the quiver algebras of Khovanov-Seidel are a special case (for
k = 1) of certain algebras Ak,n−k introduced by Chen-Khovanov [10] and independently
by Stroppel [39]. We conjecture that Theorem 6.1 admits a generalization which, for every
n-strand braid σ, provides a relationship between the k-strand part of the Lipshitz-Ozsváth-
Thurston bimodule associated to σ̂ and a Khovanov-type bimodule defined over the Ext-
algebra of the direct sum of all standard Ak,n−k-modules.

The paper is organized as follows:
In Section 2, we establish notation and collect a number of useful definitions and elemen-

tary algebraic results.
In Section 3, we describe the topological input needed for the algebraic constructions

in the remainder of the paper. After reviewing the key points in [21], we proceed to the
construction and description of

• an algebra, BKh, associated to a marked disk Dm equipped with a specific basis of
curves and

• a module,MKh
σ , associated to each braid σ, decomposed as a product of elementary

Artin generators.

We conclude the section with a brief geometric interpretation of the Khovanov-Seidel algebra
and bimodules in terms of the Fukaya category of a particular Lefschetz fibration.

In Section 4, we turn to the construction and description of the analogous bordered Floer
algebra BHF and bimodules MHF

σ , using the same topological input.
In Section 5, we describe a natural filtration on BHF whose associated graded algebra is

isomorphic to BKh. Our construction is based on a simple “toy model” (Lemma 5.3).
In Section 6, we describe a filtration onMHF

σ whose associated graded homology bimod-
ule is quasi-isomorphic to MKh

σ . We proceed by choosing a decomposition

σ = σ±k1
· · ·σ±kn

of σ as a product of elementary Artin generators, explicitly constructing a filtration onMHF
σ±k

for each elementary generator, then realizing MHF
σ as the (filtered) A∞ tensor product of

the elementary bimodules MHF
σ±k1

, . . . ,MHF
σ±kn

.

1.1. Acknowledgements. We are grateful to Tony Licata, Robert Lipshitz, Peter Ozsváth,
Catharina Stroppel, and Dylan Thurston for a great number of interesting conversations, and
to the MSRI semester-long program on Homology Theories of Knots and Links for making
these conversations possible. We would also like to thank Joshua Sussan for bringing to our
attention that some of the algebraic results of Section 3 (in particular, Lemma 3.12) were
independently obtained by Angela Klamt and Catharina Stroppel in [22] and [23].

2. Algebraic preliminaries

In this section, we establish some basic facts about filtered A∞ algebras and modules.
We assume throughout that we are working over the field F = Z/2Z. In addition, many of
the spaces we discuss will be graded either by Z, in which case we say it is graded, or by Z2,
in which case we say it is bigraded.
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Notation 2.1. If V is a bigraded vector space, i.e.

V =
⊕
i,j∈Z

V(i,j),

and k1, k2 ∈ Z, then V [k1]{k2} will denote the vector space whose bigrading has been shifted
by (k1, k2). Explicitly,

(V [k1]{k2})(i,j)
∼= V(i−k1,j−k2).

First, we recall (see [17, 18] for more details):

Definition 2.2. An A∞ algebra, A, over a field F is a graded F–vector space endowed with
grading-preserving linear maps

mn : A⊗n → A[2− n],

defined for n ≥ 1 ∈ Z, satisfying:∑
i+j+`=n

mi+1+` ◦ (Id⊗i ⊗mj ⊗ Id⊗`) = 0.

If A is ungraded but otherwise satisfies all of the conditions above, we call A an ungraded
A∞ algebra.

A graded (resp., ungraded) A∞ algebra satisfying mn = 0 for all n > 2 is a differential
graded algebra (dga) (resp., a differential algebra) with differential ∂ := m1 and multiplica-
tion m2.

Definition 2.3. Let A,B be two A∞ algebras. Then an A∞ morphism f : A → B is a
family fn : A⊗n → B[1−n] of F–multilinear maps for n ≥ 1 ∈ Z, homogeneous of degree 0,
respecting the A∞ relations in the following sense:∑

i+j+`=n

fi+1+` ◦
(

Id⊗i ⊗mj ⊗ Id⊗`
)

=
∑

i1+...+is=n

ms ◦ (fi1 ⊗ . . .⊗ fis) .

If fn = 0 for all n ≥ 2, then we say that f = f1 : A → B is a strict morphism of A∞
algebras. In particular, a strict morphism f : A → B of differential (graded) algebras is a
chain map intertwining the multiplication, m2.

Definition 2.4. An A∞ morphism f is said to be a quasi-isomorphism if f1 induces an
isomorphism on homology.

The homology of an A∞ algebra is itself an A∞ algebra. The following proposition
explains how to understand this A∞ structure.

Proposition 2.5. ([16], cf. [18, Thm. 2.3]) Let A be an A∞ algebra with multiplication
maps

mA
n : A⊗n → A[2− n].

Then H∗(A) admits an A∞ algebra structure such that

(1) m1 = 0 and m2 is induced from mA
2 ,

(2) there is an A∞ quasi-isomorphism A→ H∗(A) inducing the identity in homology.

Moreover, this structure is unique up to (non unique) A∞ isomorphism, and can be described
explicitly as follows.

Choose chain maps p : A → H∗(A), ι : H∗(A) → A, and a homotopy h : A → A[−1]
satisfying

(1) pι = Id, ιp = Id +mA
1 h+ hmA

1 , h2 = 0.
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Then the nth A∞ multiplication

mn : (H∗(A))⊗n → H∗(A)[2− n]

is given by

mn :=
∑
T

mT
n

where the sum ranges over all planar rooted trees T with n leaves and mT
n is defined by

applying the T–shaped diagram with

(1) leaves labeled with ι,
(2) interior edges labeled with h,
(3) vertices labeled with the multiplication maps mi in the algebra A, and
(4) root labeled with p

to an element of (H∗(A))
⊗n

.

See Figure 1 for an enumeration of all such rooted trees T specifying the multiplication
mn when n = 4.

Definition 2.6. A minimal model of an A∞ algebra A is an A∞ algebra H∗(A) endowed
with the structure provided by Proposition 2.5. An A∞ algebra is said to be formal if a
minimal model can be chosen so that mn = 0 for all n > 2.

Henceforth, whenever we refer to the minimal model, H∗(A), for A an A∞ algebra, we
shall always assume it has been endowed with the structure provided by Proposition 2.5 for
suitable maps ι, p, h.

Remark 2.7. The “A∞ Transfer Theorem,” [8, Thm. 2.1] gives an explicit recursive
construction of (homotopy inverse) A∞ quasi-isomorphisms A ↔ H∗(A). In particular, ι
and p admit extensions to A∞ morphisms ι′ and p′; hence, ι′ : H∗(A) → A and p′ : A →
H∗(A) give A∞ quasi-isomorphisms between A and its minimal model, H∗(A).

Definition 2.8. A strict unit for an A∞ algebra A is an element 1 in the 0–th graded
component of A satisfying

• m2(a⊗ 1) = m2(1⊗ a) = a for all a ∈ A, and
• mn(a1 ⊗ . . .⊗ 1⊗ . . . an−1) = 0 for all n 6= 2 and all a1, . . . , an−1 ∈ A.

A homological unit for A is a strict unit for H∗(A). An A∞ algebra A is called strictly
unital (resp., homologically unital) if it contains a strict (resp., homological) unit.

We also discuss A∞ modules over A∞ algebras.

Definition 2.9. An A-B A∞ bimodule, M, over homologically unital A∞ algebras A and
B, is a graded vector space over F endowed with grading-preserving linear maps

m(n1|1|n2) : A⊗n1 ⊗M⊗B⊗n2 →M[2− (n1 + 1 + n2)],

defined for n1, n2 ≥ 0 ∈ Z, satisfying:∑
0≤i1<n1,
1≤j1≤n1,

1≤i1+j1≤n1

m(n1−j1+1|1|n2) ◦
(

Id⊗i1 ⊗mj1 ⊗ Id⊗n1−(i1+j1)+1+n2

)
+

∑
0≤i1≤n1
0≤i2≤n2

1≤i1+i2<n1+n2

m(i1|1|i2) ◦
(
Id⊗i1 ⊗m(n1−i1|1|n2−i2) ⊗ Id⊗i2

)
+
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m2
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Figure 1. The full collection of rooted trees with 4 inputs specifying the
multiplication m4 described by Proposition 2.5.

∑
0≤i2<n2
1≤j1≤n1

1≤i1+j1≤n1

m(n1|1|n2−j2+1) ◦
(

Id⊗n1+1+n2−(i2+j2) ⊗mj2 ⊗ Id⊗i2
)

and such that the induced actions

H∗(A)⊗H∗(M)→ H∗(M), H∗(M)⊗H∗(B)→ H∗(M)

are unital.
By an A∞ bimodule over A we shall always mean an A-A A∞ bimodule.
A module M endowed only with a left A∞ action:

m(n1|1|0) : A⊗n1 ⊗M→M[2− (n1 + 1)]

will be called a left A∞ module over A, and a module M endowed only with a right A∞
action:

m(0|1|n2) : M⊗B⊗n2 →M

will be called a right A∞ module over B.
By an A∞ module over A we shall always mean an A∞ left, right, or bi- module over A,

as appropriate from the context.
If M is an ungraded module over ungraded A∞ algebras A and/or B but otherwise

satisfies all of the conditions above, we call M an ungraded A∞ module.
A graded (resp., ungraded) A∞ module that satisfiesm(n1|1|n2) = 0 whenever n1+1+n2 >

2 is a differential graded module (resp., a differential module) with differential ∂ := m(0|1|0)

and left (resp., right) multiplication m(1|1|0) (resp., m(0|1|1)).

Remark 2.10. The definitions of morphism and quasi-isomorphism are analogous for A∞
modules over A∞ algebras. In particular, a morphism f : M → N between A-B A∞
bimodules M,N is a collection of maps

f(n1|1|n2) : A⊗n1 ⊗M⊗B⊗n2 → N

for all n1, n2 ≥ 0 ∈ Z satisfying the appropriate analogues of the A∞ relations for morphisms
described in Definition 2.3.

We will often refer to the map f(n1|1|n2) associated to the A∞ morphism f as the
“(n1|1|n2) term of f .” In addition, we will use the terminology “(n1|1|n2) A∞ relation”
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to refer to the A∞ relation corresponding to n1 left inputs and n2 right inputs. For exam-
ple, the (1|1|0) A∞ relation for a morphism f : M→ N is given by:

f(1|1|0)(m1 ⊗ 1+ 1⊗m(0|1|0)) + f(0|1|0)m(1|1|0) = m(1|1|0)(1⊗ f(0|1|0)) +m(0|1|0)f(1|1|0).

In addition, the induced A∞ structure on H∗(M) is defined exactly as described in Propo-
sition 2.5, where the leaves and root of each rooted tree have been labeled with H∗(M) or
H∗(B) rather than H∗(A), as appropriate. As before, whenever we write H∗(M), for M an
A∞ module, we shall always assume it has been endowed with the A∞ structure provided
by Proposition 2.5 (for some admissible choice of maps ι, p, h).

Definition 2.11. Let A be a homologically unital A∞–algebra. The derived category
D∞(A) is the category with objects A∞–modules (left, right, or bi–, depending on the
context) and morphisms A∞–homotopy classes of A∞–morphisms.

Remark 2.12. Since every A∞ quasi-isomorphism has a homotopy inverse (see [9, Lemma
10.12.2.2]), passing to the derived category has the effect of making A∞ quasi-isomorphisms
invertible.

Definition 2.13. Let A be an A∞ algebra, M a right A∞ module over A and N a left A∞
module over A. Then their A∞ tensor product is the complex

M⊗̃AN :=

n⊕
i=0

M⊗A⊗n[n]⊗N

with differential given by

∂(x⊗ a1 ⊗ . . .⊗ an ⊗ y) :=
n∑
i=0

m(0|1|i)(x⊗ a1 ⊗ . . .⊗ ai)⊗ . . .⊗ an ⊗ y

+

n∑
i=1

n−i+1∑
`=1

x⊗ a1 ⊗ . . .⊗mi(a` ⊗ . . .⊗ a`+i−1)⊗ . . .⊗ an ⊗ y

+

n∑
i=0

x⊗ a1 ⊗ . . .⊗m(i|1|0)(an−i+1 ⊗ . . .⊗ an ⊗ y).

Definition 2.14. Two A∞–algebras A and B are said to be derived equivalent if there
exists a B-A bimodule X and an A-B bimodule Y such that

X⊗̃A(−)⊗̃AY : D∞(A)→ D∞(B)

is an equivalence of categories.

Definition 2.15. A (graded or ungraded) filtered A∞ algebra A is a (graded or ungraded)
A∞ algebra equipped with a sequence of subsets, for i ∈ Z:

0 ⊆ . . . ⊆ Fi ⊆ Fi+1 ⊆ . . . ⊆ A

that are compatible with the A∞ structure in the following sense:

mn (Fi1 ⊗ . . .⊗Fin) ⊆ Fi1+...+in .

If mn = 0 for all n > 2, A is a (graded or ungraded) filtered differential algebra. (Graded
or ungraded) filtered A∞ modules and filtered differential modules are defined analogously.
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Note that the compatibility of the filtration with the multiplicative structure ensures that
if A is a filtered A∞ algebra, the associated graded algebra

⊕
i Fi/Fi−1 is a well-defined

(graded or ungraded) A∞ algebra, and if M is a filtered A∞ module over a filtered A∞
algebra A, then the associated graded module

⊕
i Fi/Fi−1 is a well-defined A∞ module

over the associated graded algebra of A.

Definition 2.16. A filtered A∞ algebra A (resp., module M) is said to be bounded if there
exist n,N ∈ Z such that 0 = Fn and A = FN (A) (resp., M = FN (M)).

Notation 2.17. If M is a filtered A∞ module and k ∈ Z, M{k} will denote the filtered
A∞ module whose filtration has been shifted by k. Explicitly,

Fn (M{k}) := Fn−k (M) .

A filtration on an A∞ algebra (resp., module) induces a spectral sequence in the standard
way, and if the filtered complex is bounded this spectral sequence converges in a finite
number of steps. Furthermore, each page of the corresponding spectral sequence has the
structure of an A∞ algebra (resp., module), by Proposition 2.5. We will call the homology
of the associated graded complex,

⊕
i∈Z Fi/Fi−1, the associated graded homology algebra

(resp., the associated graded homology module) and the homology of the total complex (i.e.,
the E∞ page of this spectral sequence) the total homology algebra (resp., the total homology
module).

If M is a filtered left A∞ A-module, and N is a filtered right A∞ B-bimodule, then
M⊗N inherits a filtration (and, hence, the structure of a filtered A∞ A-B bimodule in the
sense of Definition 2.15) via: a⊗ b ∈ Fm+n (M⊗N) if a ∈ Fm (M) and b ∈ Fn (N).

Similarly, the A∞ tensor product of filtered A∞ bimodules naturally inherits the structure
of a filtered A∞ bimodule:

Lemma 2.18. Let M,N be two filtered A∞ bimodules over a filtered A∞ algebra A. Then
the A∞ tensor product, with underlying vector space:

M⊗̃N :=

∞⊕
n=0

M⊗A⊗n ⊗N

inherits the structure of a filtered A∞ bimodule as follows:

F`(M⊗̃N) :=

∞⊕
n=0

 ⊕
i+j1+...+jn+k=`

Fi(M)⊗Fj1(A)⊗ . . .⊗Fjn(A)⊗Fk(N)


Proof. Since M,N are filtered A∞ bimodules, the multiplications

m(0|1|i) : M⊗A1 ⊗ . . .⊗Ai → M

m(i|1|0) : An−i+1 ⊗ . . .⊗An ⊗N → N

mi : A` ⊗ . . .⊗A`+i−1 → A

contributing to the differential on the complex all respect the filtration in the sense of
Definition 2.15. The same is true of the higher multiplications on the complex, for the same
reason. �

Definition 2.19. An A∞ morphism f : M→ N between two filtered A∞ modules is said
to be filtered if

f(n1|1|n2)

(
Fi1 ⊗ . . .⊗Fin1+n2+1

)
⊆ Fi1+...+in1+n2+1

.
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Definition 2.20. Let A be a filtered A∞ algebra, and f : M→ N a filtered A∞ morphism
between filtered A–modules M and N. Let mM

(n1|1|n2) (resp., mN
(n1|1|n2)) denote the A∞

multiplication maps for M (resp., for N).
Then the mapping cone of f , denoted MC(f), is the filtered A∞ A–module with under-

lying F–vector space M⊕ (N[1]), A∞ multiplication maps:

m(n1|1|n2) :=

(
mM

(n1|1|n2) 0

f(n1|1|n2) mN
(n1|1|n2)

)
.

and filtration given by:

Fn(MC(f)) := {(a, b) ∈MC(f) a ∈ Fn(M) and b ∈ Fn(N)}.

The following lemma will be useful in the proof of Theorem 6.1.

Lemma 2.21. Let M⊗̃N be the filtered A∞ bimodule (over the filtered algebra A) obtained
as the A∞ tensor product of the two filtered A∞ bimodules M and N as in Lemma 2.18.
Let gr(−) denote the associated graded A∞ module of −.

Then gr(M)⊗̃gr(A)gr(N) = gr(M⊗̃AN) as A∞ bimodules over gr(A).

Proof. We construct chain maps

gr(M)⊗̃gr(A)gr(N)
Φ // gr(M⊗̃AN)

gr(M)⊗̃gr(A)gr(N) gr(M⊗̃AN)
Ψ

oo

and show that Φ and Ψ are mutually inverse.
Suppose x⊗ a1 ⊗ . . .⊗ an ⊗ y ∈M⊗̃AN represents an element

[x]⊗ [a1]⊗ . . .⊗ [an]⊗ [y] ∈ Fi
Fi−1

(M)⊗ Fj1
Fj1−1

(A)⊗ . . .⊗ Fjn
Fjn−1

(A)⊗ Fk
Fk−1

(N)

⊆ gr(M)⊗̃gr(A)gr(N).

Letting I := i+ j1 . . .+ jn + k, then we define

Φ([x]⊗ [a1]⊗ . . .⊗ [an]⊗ [y]) := [x⊗ a1 ⊗ . . .⊗ an ⊗ y]

∈ FI
FI−1

(M⊗̃AN).

This map is well-defined, since any other representative, x′⊗a′1⊗ . . .⊗a′n⊗y′ ∈M⊗̃AN,
of [x] ⊗ [a1] ⊗ . . . ⊗ [an] ⊗ [y] will differ from x ⊗ a1 ⊗ . . . ⊗ an ⊗ y by an element in FI−1,
by the definition of the filtration on M⊗̃AN.

Similarly, we send an equivalence class [x ⊗ a1 ⊗ . . . ⊗ an ⊗ y] ∈ gr(M⊗̃AN) to the
uniquely-specified equivalence class

Ψ([x⊗ a1 ⊗ . . .⊗ an ⊗ y]) := [x]⊗ [a1]⊗ . . .⊗ [an]⊗ [y]

∈ gr(M)⊗̃gr(A)gr(N).

Furthermore, the differentials on gr(M⊗̃AN) and gr(M)⊗̃gr(A)gr(N) agree, by the same
argument above applied to the image of the differential of a representative x ⊗ a1 ⊗ . . . ⊗
an ⊗ y ∈M⊗̃AN. �
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2.1. Formality and derived equivalence. The following results will be useful throughout
the paper.

Lemma 2.22. Let A be a formal dg algebra and H∗(A) its homology algebra. Then D∞(A)
and D∞(H∗(A)) are equivalent triangulated categories.

Proof. Since A is formal, there is an A∞ quasi-isomorphism φ : A→ H∗(A), and by Propo-
sition 2.4.10 of [28], this A∞ quasi-isomorphism induces two mutually quasi-inverse functors
Inductφ : D∞(A)→ D∞(H∗(A)) and Restφ : D∞(H∗(A))→ D∞(A). (Note that although
Proposition 2.4.10 of [28] is formulated for categories of A∞ right modules, similar state-
ments also hold for categories of A∞ left modules and A∞ bimodules; see [28] for details). �

Remark 2.23. Lemma 2.22 can also be obtained as a consequence of the following facts:

• If two dg algebras are related by an A∞ quasi-isomorphim, then there is also a
zig-zag of honest quasi-isomorphisms connecting the two dg algebras (this follows
from [26, Corollaire 1.3.1.3c]). In particular, a dg algebra is formal (in the sense of
Definition 2.6) if and only if it is connected to its homology algebra by a zig-zag of
honest quasi-isomorphisms.
• An honest quasi-isomorphism between two dg algebras induces an equivalence be-

tween the ordinary derived categories of the two dg algebras. Explicitly, this equiv-
alence is given by scalar restriction and derived scalar extension along the given
quasi-isomorphism (see [5, 3.6.2]).
• The ordinary derived category of a dg algebra is equivalent to the A∞ derived

category of the given dg algebra (see [28, Proposition 2.4.1]).

The following lemmas provide sufficient (but not necessary) conditions for formality of
an A∞ module.

Lemma 2.24. Let A be a differential (graded) algebra (resp., let M be a differential (graded)
module over A), and let ι, p, h be maps satisfying the conditions in Proposition 2.5. If, in
addition,

(1) hι = 0, and
(2) mA

2 (ι⊗ι)(A⊗2) ⊆ ι(A) (resp., mM
(n1|1|n2)(ι⊗ι)(A

⊗n1⊗M⊗A⊗n2) ⊆ ι(M) whenever

n1 + 1 + n2 = 2),

then A is formal (resp., M is formal).
Furthermore, ι : A→ H∗(A) (resp., ι : M→ H∗(M)) is a strict A∞ quasi-isomorphism.

Proof. In the interest of brevity, we give the argument for the case of A a differential
(graded) algebra, leaving the completely analogous proof in the case of M a differential
(graded) module to the reader.

Each tree T contributing to the definition of

mn : (H∗(A))
⊗n → H∗(A)

for n > 2 yields the 0 map, since each such tree T involves a product of terms in A, at least
one of which is either:

• of the form h ◦mA
2 ◦ (ι⊗ ι) (if T is trivalent) or

• of the form mA
n (ι⊗ . . .⊗ ι), for n > 2 (if T is not trivalent).

In both cases, such a term is 0 in A by assumption, hence the corresponding map is 0,
implying formality of A.
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To see that ι : A→ H∗(A) is a strict quasi-isomorphism, we note that by definition ι is a
chain map inducing an isomorphism on homology. We therefore need only show that there
are no higher terms in the A∞ morphism generated by ι.

The “A∞ Transfer Theorem” ([8, Thm. 2.1]) tells us that ιn can be defined recursively
as

ιn :=
∑

i1+...+ir=n
r>1

hmA
r (ιi1 ⊗ . . .⊗ ιir ) .

Assumptions (1) and (2), combined with the assumption that mA
r = 0 for r > 2, now

allow us to conclude inductively that ιn = 0 for n ≥ 2, as desired.
�

Lemma 2.25. Let M be a differential (graded) module over an algebra A, and let

ιM : H∗(M)→M, pM : M→ H∗(M), hM : M→M

satisfy the conditions in Proposition 2.5. Suppose in addition that

(1) pMhM = 0, and
(2) Im(hM ) and Im(mM

(0|1|0)) are both submodules of M over A (i.e., left or/and right

multiplication by an element of A preserves Im(hM ) and Im(mM
(0|1|0))).

Then M is formal, and the projection map pM : M→ H∗(M) is a strict quasi-isomorphism.

Proof. We give the proof in the case that M is a differential (graded) bimodule over A. If
Assumption (2) holds only under left (resp., right) multiplication, then pM will be a strict
quasi-isomorphism of left (resp., right) A–modules.

Since A is an algebra, mA
n = 0 unless n = 2, and A is trivially A∞ isomorphic to its

homology. Choosing ιA : H∗(A) → A and pA : A → H∗(A) to be the identity morphism,
and hA : A → A to be the zero morphism, we now claim that any tree T contributing to
the definition of

m(n1|1|n2) : A⊗n1 ⊗ (H∗(M))⊗A⊗n2 → H∗(M)

is zero if n1 + n2 + 1 > 2. This follows because:

• If T is trivalent then it corresponds to a summand of the form pM ◦ hM (m), since
Im(hM ) is an A–bimodule. Such a term is zero by Assumption (1) above.

• If T is not trivalent then it involves a product with at least one term of the form:

mM
(n′1|1|n′2)(ι⊗ . . .⊗ ι) (resp., mA

n (ι⊗ . . .⊗ ι))

for n′1 + n′2 + 1 > 2 (resp., n > 2), which is zero since M is a dg module (resp.,
since A is an algebra).

Therefore, m(n1|1|n2) = 0 for all n1 + n2 + 1 > 2, and M is formal.
To see that pM is a strict quasi-isomorphism, we again appeal to the Transfer Theorem,

[8, Thm. 2.1], which tells us that (pM )(n1|1|n2) is defined recursively as:

(pM )(n1|1|n2) :=
∑

t+u1=n1
q+u2=n2

p(t|1|q)
(
1⊗t ⊗m(u1|1|u2) ⊗ 1⊗q

)
h[n1|1|n2]

+
∑

t1+2+t2=n1+1+n2
n1≥t1+2

p(n1−1|1|n2)

(
1⊗t1 ⊗m2 ⊗ 1⊗t2

)
h[n1|1|n2]

+
∑

t1+2+t2=n1+1+n2
n2≥t2+2

p(n1|1|n2−1)

(
1⊗t1 ⊗m2 ⊗ 1⊗t2

)
h[n1|1|n2],
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where

h[n1|1|n2] : A⊗n1 ⊗M⊗A⊗n2 → A⊗n1 ⊗M⊗A⊗n2

can also be defined recursively as:

h[n1|1|n2] :=
∑

i+1+j=n1+1+n2

1⊗i ⊗ h⊗ (ιp)⊗j

Noting that h[n1|1|n2] = 1⊗n1⊗h⊗1⊗n2 since we are using the identity A∞ isomorphisms
A↔ H∗(A), we see, using Assumptions (1) and (2), that both

(pM )(1|1|0) := p(0|1|0) ◦m(1|1|0) ◦ (1⊗ h)

= 0

and

(pM )(0|1|1) := p(0|1|0) ◦m(0|1|1) ◦ (h⊗ 1)

= 0.

Combined with the fact that mA
n = 0 for all n 6= 2 and mM

(n1|1|n2) = 0 for all n1+1+n2 > 2,

(pM )(n1|1|n2) is then identically 0 by induction for all (n1 + 1 + n2) ≥ 2, as desired.
�

3. Khovanov-Seidel Hom algebras and bimodules

In this section, we construct dg bimodules following Khovanov-Seidel in [21]. We begin
by describing the topological data needed for the construction of both the Khovanov-Seidel
bimodules and their bordered Floer analogues (described in Section 4).

3.1. Topological data: Bases of curves. Let Dm denote the unit disk in the complex
plane, equipped with a set,

∆ :=

{
−1 +

2(j + 1)

m+ 2
∈ Dm ⊂ C j = 0, . . . ,m

}
,

of m + 1 points equally distributed along the intersection of the real axis with Dm. Label

by j the point at position −1 + 2(j+1)
m+2 .

By a curve in Dm we shall always mean the image of a smooth imbedding γ : [0, 1]→ Dm

which is transverse to ∂Dm and satisfies γ−1(∂Dm ∪∆) = {0, 1}.

Definition 3.1. A ∂–admissible curve in Dm is a curve in Dm for which γ(0) = −1 and
γ(1) ∈ ∆.

A ∂–admissible curve is a particular type of admissible curve in the sense of [21, Sec. 3b].
Two ∂–admissible curves c1 and c2 are said to be isotopic if there is a homotopy between
c1 and c2 through ∂–admissible curves.

Notation 3.2. Associated to any curve, c ⊂ Dm, is a canonical section of the interior of
c to the real projectivization of the tangent bundle of Dm \ ∆. By choosing a lift of this
section to a particular Z2 cover as described in [21, Sec. 3d], one assigns a bigrading to c.
We shall denote by c̃ the data of a curve c ⊂ Dm equipped with such a choice of bigrading.

Definition 3.3. [21, Sec. 3a] Two curves c0, c1 ⊂ Dm are said to have minimal geometric
intersection if they satisfy the following conditions:

• c0 and c1 intersect transversely,
• c0 ∩ c1 ∩ ∂Dm = ∅, and
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0
...

1 m*
d2d0 d1 dm

Figure 2. The curves dj , for j = 0, . . . ,m, are the intersections of the lines

Re(z) =
(
−1− 1

m+2

)
+ 2(j+1)

m+2 with the unit disk in C. By convention, the

distinguished point, labeled by a ∗, at −1 ∈ ∂Dm, is the left endpoint for
all ∂–admissible curves in Dm.

• If z− 6= z+ are two points in c0 ∩ c1 not both in ∆, α0 ⊂ c0 and α1 ⊂ c1 are two
arcs with endpoints z−, z+ such that α0 ∩ α1 = {z−, z+}, and K is the connected
component of Dm− (c0∪ c1) bounded by α0∪α1, then if K is topologically an open
disk, it must contain at least one point of ∆. Informally, we say there are no “trivial
bigons” among the connected components of Dm − (c0 ∪ c1).

Definition 3.4. [21, Sec. 3e] Let d0, . . . , dm ⊂ Dm be the curves pictured in Figure 2. A ∂–
admissible curve in Dm is said to be in normal form if it has minimal geometric intersection
with dj for each j = 0, . . . ,m.

Definition 3.5. A basis of ∂–admissible curves in Dm is a set, B = {c0, . . . , cm} , of ∂–
admissible curves satisfying the conditions:

• If γj : [0, 1]→ Dm is the imbedding whose image is cj , then γ(1) = j ∈ ∆ (the right
endpoint of cj is j), and

• ci∩cj = {−1} if i 6= j (distinct curves ci and cj intersect only at their left endpoints).

If we, furthermore, specify a lift of each curve, cj ∈ B, to a bigraded curve, c̃j , we say

that we have a basis, B̃ = {c̃0, . . . , c̃m}, of ∂–admissible bigraded curves in Dm.

Unless otherwise specified, from this point forward whenever we write that B̃ is a basis,

we shall always mean that B̃ is a basis of ∂–admissible bigraded curves in normal form in
Dm. Two bases B = {c̃0, . . . c̃m} and B′ = {c̃′0, . . . , c̃′m} are said to be equivalent if there
exists an isotopy c̃i → c̃′i for each i = 0, . . . ,m through ∂–admissible bigraded curves in
normal form.

As in [21], we let G = Diff(Dm, ∂Dm; ∆) denote the group of diffeomorphisms f of Dm

satisfying f |∂Dm
= Id and f(∆) = ∆ and note that there is a canonical identification of

π0(G) with Bm+1, the Artin braid group on m+ 1 generators. Under this correspondence,
(isotopy classes of) ∂–admissible curves are sent to (isotopy classes of) ∂–admissible curves.

Moreover, an (equivalence class of) basis B̃ is sent to an (equivalence class of) basis σ(B̃),

after suitably reordering the curves in σ(B̃).

3.2. The ring Am and a braid group action on Db(Am). In [21], Khovanov-Seidel
associate to a braid, σ ∈ Bm+1, a bimodule over a quiver algebra, Am (defined below). In
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m0 1

...
2

Figure 3.

this subsection, we explain how their construction yields a family of algebras and bimodules,
one for each choice of basis. Our end goal is the construction of a particular algebra, BKh,

and a bimodule, MKh
σ over BKh, from the data of a particular such basis, Q̃.

We begin by reviewing the original construction of Khovanov-Seidel in [21]. Let Γm be
the oriented graph (quiver) whose vertices are labeled 0, . . . ,m and whose edges are shown
in Figure 3. Recall that, given any oriented graph Γ, one defines its path ring as the vector
space over F freely generated by the set of all finite-length paths in Γ, where multiplication
is given by concatenation, and the product of two non-composable paths is set to 0. The
ring Am is then defined as a quotient of the path ring of Γm by the collection of relations

(i− 1|i|i+ 1) = (i+ 1|i|i− 1) = 0, (i|i+ 1|i) = (i|i− 1|i), (0|1|0) = 0

for each 0 ≤ i ≤ m. In the above, following [21], we have labeled each path in Γm by the
complete ordered tuple of vertices it traverses. So, for instance, (i − 1|i|i + 1) denotes the
path that starts at vertex i− 1, moves right to i, then right again to i+ 1. The path ring of
Γm is further endowed with a grading by setting deg(i) = deg(i|i+1) = 0 and deg(i|i−1) = 1
for all i. This grading descends to the quotient, Am, since the relations defining Am are
homogeneous with respect to the grading.2

Note that the collection {(i)|i ∈ 0, . . . ,m} of constant paths are mutually orthogonal
idempotents, and

∑m
i=0(i) is the identity in Am. There are corresponding decompositions

of Am as a direct sum of projective left modules Am =
⊕m

i=0Am(i) (resp., projective right-
modules Am =

⊕m
i=0(i)Am). As in [21], we denote Am(i) (resp., (i)Am) by Pi (resp., iP ).

Note that Pi (resp., iP ) is the set of all paths ending at i (resp., beginning at i).
To streamline notation, we henceforth assume that we have fixed m ≥ 0 ∈ Z, and let A

denote the algebra Am.
Khovanov-Seidel go on to associate to each braid σ ∈ Bm+1 an element of Db(A),

the bounded derived category of A–bimodules, by associating to each elementary Artin
braid generator σ±1

i (pictured in Figure 4) a dg bimodule Mσ±i
and to each braid, σ :=

σi1
± · · ·σik±, decomposed as a product of elementary braid words, the dg bimodule

Mσ =Mσi1± ⊗A . . .⊗AMσ±ik
.

They then verify that any two decompositions of σ as a product of elementary Artin braid
generators give rise to quasi-isomorphic complexes, and henceMσ gives rise to a well-defined
element in Db(A).

3.3. The dg algebra B and the algebra BKh. Now, suppose we are given the data of a
∂–admissible bigraded curve in normal form. Khovanov-Seidel show, in [21, Sec. 4], how to
use this data to construct a bounded complex of bigraded projective left modules over the

2This internal grading corresponds to the second of the two gradings discussed in Notation 3.2. Note that
this grading is not the grading by path length which appears in [10, 39] and corresponds to the j (quantum)

grading of [19]. See Remark 3.21.
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i−1 i m0 i−1 i m0

...... ......

σ−
i

σ+
i

Figure 4. The elementary Artin generators, σ±i

0
...

1 m*

qm

q1

q0

Figure 5. The basis Q = {q0, . . . , qm}

algebra A. Furthermore, a basis, B̃, of such curves yields a dga via Yoneda imbedding (cf.
[18, Sec. 2.6]). Recall:

Definition 3.6. Let (C1, ∂1), (C2, ∂2) be two bounded dg left modules over an algebra A.
Then the Hom complex of the pair (C1, C2), denoted HomA(C1, C2), is the bounded complex
whose generators are left module morphisms, F : C1 → C2, and whose differential, D, is
given by

D(F ) := ∂2F + F∂1.

Construction 3.7. Let B̃ = {c̃0, . . . , c̃m} be a basis, and let L(c̃j) be the bounded complex
of projective A–modules associated to c̃j, for each j = 0, . . . ,m. Then the direct sum,

m⊕
i,j=0

HomA(L(c̃i), L(c̃j)),

is a dga, with multiplication given by composition of A–bimodule morphisms. We will refer

to
⊕m

i,j=0 HomA(L(c̃i), L(c̃j)) as the Hom algebra associated to B̃.

We focus in the present paper on the Hom algebra associated to the basis Q̃ = {q̃0, . . . , q̃m}
given by (a particular lift of) the collection of curves pictured in Figure 5.3

Applying the construction of [21, Sec. 4a], we associate to q̃j the dg bimodule:

Qj := 0 // P0

·(0|1) // P1

·(1|2) // . . .·(j−1|j)// Pj // 0 ,

3We expect that results similar to those described in Theorems 5.1 and 6.1 hold for other choices of basis,
but we do not address that here.
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where the differential map “ ·(i−1|i)” denotes “right multiplication by the element (i−1|i).”
By fixing a lift of the tangent vector to the curve q0 at a point near 0 ∈ ∆ and declaring this
lift to correspond to bigrading (0, 0), we obtain a “canonical” bigrading on Qj satisfying the
property that the bigrading of the idempotent (i) ∈ Pi is (i, 0).

Notation 3.8. We shall denote by B the Hom algebra associated to Q̃:
m⊕

i,j=0

HomA (Qi, Qj)

and by BKh its homology, H∗(B), considered as an A∞ algebra via the construction in
Proposition 2.5.

We will eventually be interested in D∞(BKh)–in particular, a braid group action on this
category–so we now devote some time to describing the structure of B and BKh.

Notation 3.9. Let RI be a bounded complex of elementary projective left A–modules (e.g.,
one obtained from an admissible curve in normal form in Dm as explained in [21, Sec. 4]):

RI = 0→ Pi0{s0} → . . .→ PiN {sN} → 0.

Suppose further that Pi0{s0} is in (co)homological grading 0. Then we will use the
notation IR to denote the following bounded complex of elementary projective right A–
modules:

IR := 0← i0P{−s0}[0]← . . .← iNP{−sN}[−N ]← 0,

where, if a map Pij → Pij+1
in RI is given by right multiplication by a path γ ∈ A, then

the corresponding map ijP ← ij+1P in IR is given by left multiplication by γ.

Lemma 3.10. Let RI , SJ be bounded complexes of elementary projective left A–modules as
above. Then HomA(RI , SJ ) ∼= IR⊗A SJ .

Proof. Each element φ ∈ HomA(RI , SJ ) can be decomposed as a sum of left A–module
maps φk,` : Pik{sk} → Pj`{s`}, each of which is uniquely determined by the image, φk,`(ik),
of the idempotent, (ik). We therefore obtain an isomorphism

HomA(RI , SJ )→ IR⊗A SJ
of F–vector spaces identifying φ with the element,

∑
k,` ((ik)⊗ φk,`(ik)).

To see that the Hom complex differentialD(φ) := φdI+dJ φ on the left matches the tensor
product differential on the right, we simply note that if φ =

∑
k,` φk,` ∈ HomA(RI , SJ ),

then for each pair, (k, `), φk,`dI is obtained by pre- (i.e., left-) (resp., dJ φ is obtained by
post- (i.e., right-)) multiplying φk,` by a path γk (resp., γ`). This is precisely the induced
differential on the tensor product complex IR⊗A SJ .

�

Lemma 3.11. Let RI , SJ be two bigraded bounded complexes of projective modules obtained
from admissible bigraded curves in normal form as explained in [21, Sec. 4]. Then the
differential on HomA(RI , SJ ) has degree (1, 0).

Proof. By definition, the differential on each of RI , SJ has degree (1, 0), implying that the
differential on IR and, hence, the differential on

HomA(RI , SJ ) = IR⊗A SJ ,

has degree (1, 0) as well. �
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The following lemma was also obtained independently by Klamt and Stroppel. Compare
[22, Thms. 5.7, 7.3] and [23, Thm. 5.7].

Lemma 3.12. The dg algebra B :=
⊕m

i,j=0 HomA (Qi, Qj) is formal. Furthermore, the
algebra

BKh := H∗(B)

has the following explicit description:

BKh :=

m⊕
i,j=0

iB
Kh
j , with

iB
Kh
j :=

 0 if i < j,
SpanF〈i1j〉 if i = j, and

SpanF〈i1j , ixj〉 if i > j,

where the bigradings on generators are given by:

gr (i1j) = (0, 0) for all i ≥ j,
gr (ixj) = (−1, 1) for all i > j.

and the multiplication is given by:

m2(i1j ⊗ j1k) := i1k

m2(i1j ⊗ jxk) := ixk

m2(ixj ⊗ j1k) := ixk

m2(ixj ⊗ jxk) = 0

(As usual, m2 : iB
Kh
j ⊗ kB

Kh
` → iB

Kh
` is identically 0 when j 6= k.)

Proof. We know from [21, Prop. 4.9] that as an F–vector space,

iB
Kh
j is free of rank

 0 when i < j,
1 when i = j, and
2 when i > j.

Furthermore, we claim that the generators of iB
Kh
j are represented by the morphisms{

(0) + . . .+ (j) when i = j, and
(0) + . . .+ (j) and (1|0) + . . .+ (j + 1|j) when i > j.

To see this, let kP` denote the module kP ⊗A P`. Then the complex HomA(Qi, Qj) =

iQ⊗A Qj is given by:

0P0
//
0P1

// . . . // 0Pj

1P0

OO

//
1P1

OO

// . . .

OO

// 1Pj

OO

. . .

OO

// . . .

OO

// . . .

OO

// . . .

OO

iP0

OO

//
iP1

OO

// . . .

OO

// iPj

OO
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where the horizontal maps kP` → kP`+1 are given by right multiplication by (`|`+1) and the
vertical maps kP` → k−1P` are given by left multiplication by (k− 1|k). Note, furthermore,
that, as an F–vector space:

kP` =


SpanF〈(k), (k|k − 1|k)〉 if k = ` 6= 0
SpanF〈(k)〉 if k = ` = 0
SpanF〈(k|k ± 1)〉 if ` = k ± 1
0 otherwise.

In particular, the chain complex is supported in the three diagonals of the form kPk, kPk−1,
and kPk+1.

By direct calculation one sees that when i < j the chain complex splits as the direct sum
of the two acyclic subcomplexes:

(0) // (0|1)

(1)

OO

// (1|2)

. . .

OO

// (i− 1|i)

(1|0) // (1|0|1)

(2|1)

OO

// (2|1|2)

. . .

OO

// (i|i− 1|i)

When i = j, the chain complex splits in a similar fashion, but the first of the two
complexes has homology generated by (0) + . . .+ (j) and the second is acyclic:

(0) // (0|1)

(1)

OO

// (1|2)

. . .

OO

// (j − 1|j)

(j)

OO

(1|0) // (1|0|1)

(2|1)

OO

// (2|1|2)

. . .

OO

// (j|j − 1|j)

When i > j, the chain complex again splits, but now both subcomplexes have non-trivial
homology, the first generated by (0) + . . . + (j), and the second generated by (1|0) + . . . +
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(j + 1|j):

(0) // (0|1)

(1)

OO

// (1|2)

. . .

OO

// (j − 1|j)

(j)

OO

(1|0) // (1|0|1)

(2|1)

OO

// (2|1|2)

. . .

OO

// (j|j − 1|j)

(j + 1|j)

OO

In all three cases, we denote the first subcomplex C1 and the second subcomplex Cx.
We now note that, as described in Proposition 2.5, BKh := H∗ (B) inherits an A∞ struc-

ture from B. Accordingly, we view B as an A∞–algebra with differential mB
1 , multiplication

mB
2 , and mB

n := 0 for all n > 2 and use Proposition 2.5 to give an explicit description of
the A∞ structure on BKh := H∗(B) from the data of F–linear maps p : B → H∗(B),
ι : H∗(B)→ B, and h : B → B satisfying

pι = Id, ιp = Id +mB
1 h+ hmB

1 , h2 = 0.

We will define p : iBj → iB
Kh
j , ι : iB

Kh
j → iBj , h : iBj → iBj explicitly in the case

i > j, leaving the completely analogous cases i ≤ j to the reader.
Begin by performing a change of basis on the two subcomplexes comprising iBj , obtaining

for the first subcomplex:

(0) // (0|1)

(0) + (1) // (1|2)

. . .

(0) + . . .+ (j − 1) // (j − 1|j)

(0) + . . .+ (j)
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and the second:

(1|0) // (1|0|1)

(1|0) + (2|1) // (2|1|2)

. . .

(1|0) + . . .+ (j|j − 1) // (j|j − 1|j)

(1|0) + . . .+ (j + 1|j)

Now, define the projection map p on basis elements φ ∈ iBj above, extending F–linearly
from the assignment:

p(φ) :=

 i1j if φ = (0) + . . .+ (j),

ixj if φ = (1|0) + . . .+ (j + 1|j), and
0 otherwise.

The homotopy map h is the F–linear extension of:

h(φ) :=

{ (
mB

1

)−1
(φ) if φ ∈ Im(mB

1 )
0 otherwise,

where in the above,
(
mB

1

)−1
(φ) is defined to be the (unique) basis element φ′ satisfying

∂(φ′) = φ.
The inclusion map ι is the F–linear extension of:

• ι(i1j) := (0) + . . .+ (j),
• ι(ixj) := (1|0) + . . .+ (j + 1|j).

One easily checks that p and ι are chain maps and that p, i, h satisfy:

pι = Id, ιp = Id + ∂h+ h∂, ph = hι = h2 = 0.

Furthermore, hι = 0 and mB
2 (ι⊗ ι)

(
BKh

)⊗2 ⊆ ι
(
BKh

)
. An application of Lemma 2.24

then implies that B is formal, as desired.
Verification that the bigradings and multiplication are as stated is a straightforward

calculation. �

Remark 3.13. The algebra BKh is isomorphic to the algebra of lower triangular (m+ 1)×
(m+ 1) matrices over F[x]/(x2) with only 0’s and 1’s on the main diagonal:

BKh ∼=




d0 0 . . . 0

φ1,0 d1
. . .

...
...

. . .
. . . 0

φm,0 . . . φm,m−1 dm


∣∣∣∣∣∣∣∣∣∣
di ∈ {0, 1}

 ⊂Mm+1(F[x]/(x2))

We define an algebra isomorphism by sending the generator i1j ∈ iB
Kh
j (resp., ixj ∈

BKhj ) to the (m+ 1)× (m+ 1) matrix whose only nonzero matrix entry is a 1 (resp., an x),
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located in row number i and column number j (where we assume that rows and columns
are numbered from 0 to m).

We close our discussion of BKh with a technical lemma that will prove useful in our con-
struction of the braid group action on D∞

(
BKh

)
(in particular, in the proof of Proposition

3.18).

Lemma 3.14. Let ι : BKh → B, p : B → BKh, and h : B → B be the F–linear
transformations defined in the proof of Lemma 3.12. The A∞ morphism of BKh–modules,
ιB : BKh → B, given by

(ιB)(n1|1|n2) :=

{
ι if n1 = n2 = 0, and
0 otherwise.

is a quasi-isomorphism. Furthermore, there exists an A∞ quasi-isomorphism of BKh–
modules, pB : B → BKh, whose first few terms are given by:

(pB)(n1|1|n2) :=

{
p if n1 = n2 = 0,
0 if n1 = 1 and n2 = 0, and

(pB)(0|1|1) : B ⊗BKh → BKh is the bilinear map satisfying

(pB)(0|1|1) (a⊗ b) :=

• i1k if a = (`|`+ 1) ∈ iBj with i < j, k ≤ ` ≤ i, and b = j1k ∈ jB
Kh
k with j > k,

i ≥ k,
• ixk if a = (`|` + 1) ∈ iBj with i < j, k + 1 ≤ ` ≤ i, and b = jxk ∈ jB

Kh
k with

j > k, i > k, and
• ixk if a = (`|` − 1|`) ∈ iBj with i ≤ j, k + 1 ≤ ` ≤ i, and b = j1k ∈ jB

Kh
k with

j > k, i > k.
• 0 for all other basis elements a ∈ B, b ∈ BKh in the proof of Lemma 3.12.

Proof. Let m(n1|1|n2) denote the structure maps for B and mKh
(n1|1|n2) denote those (induced

by Proposition 2.5) for BKh, both considered as BKh–bimodules.
Recall that the “Transfer Theorem” [8, Thm. 2.1] tells us how to extend ι, p to A∞

quasi-isomorphisms. Explicitly, one defines

(ιB)(0|1|0) := ι, (pB)(0|1|0) := p

and constructs higher terms of ιB , pB satisfying the A∞ relations for morphisms. Since
ι, p induce isomorphisms on homology, ιB and pB will then yield A∞ quasi-isomorphisms
B ↔ BKh.

We begin by calculating the higher terms of ιB . But here our work is already done, since
ι, p, and h satisfy the assumptions of Lemma 2.24 (see the proof of Lemma 3.12), hence
(ιB)(n1|1|n2) = 0 for all (n1 + 1 + n2) > 1, as desired.

We now move to the calculation of the higher terms of pB .

Computation of (pB)(1|1|0):

Here we note that ph = 0, and Im(h) and Im(mB
1 ) are both left BKh submodules, so an

application of Lemma 2.25, implies that p : B → BKh is a left module map (and, hence,
we can extend p to a left A∞ morphism with no higher left A∞ terms). In particular,
(pB)(1|1|0) := 0, as desired.
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Computation of (pB)(0|1|1):

Unfortunately, Im(h) and Im(mB
1 ) are not right BKh submodules, so we will have to work

harder here. The Transfer Theorem ([8, Thm. 2.1]), combined with remarks in the proof of
Lemma 2.25, tells us that

(pB)(0|1|1) := p ◦m(0|1|1) ◦ (h⊗ 1).

We now claim that if iaj ∈ iBj and jbk ∈ jB
Kh
k , then (pB)(0|1|1) (iaj ⊗ jbk) = 0 unless

the triple i, j, k satisfies the property that i ≤ j, j > k, and i ≥ k. We can see this by a
case-by-case analysis (see the table below, which describes (pB)(0|1|1) in the various cases).

For example, if j < k (first column of table) then jbk = 0, and if i < k (first entry in second
column), then p(0|1|0) := 0. In both cases, we then have (pB)(0|1|1) (iaj ⊗ jbk) = 0. On the

other hand, when i > j ≥ k or i = j = k (the remaining entries in the table except the top
two in the third column), we notice that

m(0|1|1)(Im(h)⊗ jbk) ⊆ Im(h).

Since ph = 0, we have (pB)(0|1|1) = 0 in these cases as well.

We are therefore left to compute (pB)(0|1|1) when i ≤ j, j > k, and i ≥ k (the starred

entries of the table). There are three subcases.

(pB)(0|1|1) (iaj ⊗ jbk) j < k j = k j > k

i < j 0 0 ∗
i = j 0 0 ∗
i > j 0 0 0

Case 1: i < j, j > k, and i = k
Here, we notice that for basis elements iaj , jbk, we have (pB)(0|1|1) (iaj ⊗ jbk) 6= 0 iff

iaj = (i|i+ 1) and jbk = j1k.
In this case,

(pB)(0|1|1) (iaj ⊗ jbk) := p [(0) + . . .+ (i)]

= i1k.

Case 2: i < j, j > k, and i > k
Again, we notice that for basis elements iaj , jbk, we have (pB)(0|1|1) (iaj ⊗ jbk) 6= 0 iff

either

• iaj = (`|`+ 1) for k ≤ ` ≤ i and jbk = j1k, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(0) + . . .+ (k)] = i1k.

• iaj = (`|`+ 1) for k + 1 ≤ ` ≤ i and jbk = jxk, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(1|0) + . . .+ (k + 1|k)] = ixk.

• iaj = (`+ 1|`|`+ 1) for k ≤ ` ≤ i and jbk = j1k, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(1|0) + . . .+ (k + 1|k)] = ixk.

Case 3: i = j > k
An analysis similar to the previous cases allows us to conclude that p(0|1|1)(iaj⊗ jbk) = 0

on basis elements iaj , jbk except when iaj = (`|`− 1|`) for k + 1 ≤ ` ≤ i and jbk = j1k. In
these cases, we have:

p(0|1|1) [iaj ⊗ jbk] = ixk.
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Armed with the above calculations, we define p(0|1|1) : iBj ⊗ jB
Kh
k → iBk in the case

i ≤ j, j > k, i ≥ k to be the unique bilinear map assigning the values above to the basis
elements described and 0 to all other basis elements. The desired conclusion follows.

�

3.4. A braid group action on D∞(BKh). Khovanov-Seidel’s braid group action on Db(A)
induces a braid group action on D∞(BKh), via the following:

Proposition 3.15. There is an equivalence of triangulated categories

D(A)↔ D(B)↔ D∞(B)↔ D∞(BKh).

Proof. Lemmas 2.22 and 3.12 together imply the equivalence D∞(B)↔ D∞(BKh) and [28,
Proposition 2.4.1] implies the equivalence of D(B) with D∞(B).

To see that D(A) ↔ D(B), we will show that the functors F : D(A) → D(B) and
G : D(B)→ D(A) given by

F(M) := Q∗ ⊗AM = HomA(Q,M)

G(N) := Q⊗B N

where Q :=
⊕m

i=0Qi and Q∗ := HomA(Q,A) =
⊕m

i=0 iQ are well-defined mutually inverse
equivalences of triangulated categories.

Since each iQ ⊂ Q∗ is a complex of projective right modules over A, the functor Q∗⊗A−
is exact, so F is clearly well-defined. To prove that G is also well-defined, we will show that
the right dg B-module HomA(Pi, Q) ⊂ Q = HomA(A,Q) =

⊕m
i=0 HomA(Pi, Q) is homotopy

equivalent to a semi-free dg B-module, and so tensoring with this dg B-module is exact.
Let MC(i1i−1) denote the mapping cone of the chain map i1i−1 : Qi → Qi−1 defined by

i1i−1 := (0) + . . . + (i − 1) ∈ HomA(Qi, Qi−1). There is an A–linear chain map ι : Pi →
MC(i1i−1) given by the inclusion of Pi into Qi, and an A–linear chain map p : MC(i1i−1)→
Pi given by

p(φ) :=

 φ if φ ∈ Pi ⊂ Qi, and
−φ(i− 1|i) if φ ∈ Pi−1 ⊂ Qi−1, and
0 otherwise.

We leave it to the reader to verify that

pι = Id and ιp = Id + ∂h+ h∂,

where ∂ is the differential in MC(i1i−1) and h : MC(i1i−1) → MC(i1i−1) is the A–linear
map h := i−11i : Qi−1 → Qi defined by i−11i := (0) + . . .+ (i− 1) ∈ HomA(Qi−1, Qi).

Thus Pi is homotopy equivalent to the mapping cone of the chain map i1i−1 : Qi → Qi−1,
and consequently, HomA(Pi, Q) is homotopy equivalent to the mapping cone of the induced
chain map i−1fi : i−1B → iB, where iB := HomA(Qi, Q) = (i1i)B. Since MC(i−1fi)
is semi-free (because i−1B and iB are semi-free), the functor (HomA(Pi, Q) ⊗B −) ∼=
(MC(i−1fi)⊗B −) is exact, as desired.

It remains to show that the functors F and G are inverses of each other. Clearly, the
composition F ◦ G is isomorphic to the identity functor of D(B) because Q∗ ⊗A Q ∼=
HomA(Q,Q) = B by Lemma 3.10. To show that the composition G ◦ F is isomorphic
to the identity functor of D(A), we will show that the map

ψ : Q⊗B Q∗ −→ A

defined by ψ(q ⊗ f) := f(q) ∈ A for f ∈ Q∗ and q ∈ Q is an isomorphism of dg bimodules.
We first note that the differential in Q⊗B Q∗ is trivial because the differential in Q (resp.,
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Q∗) is given by right (resp., left) multiplication with the element

b :=

m∑
i=1

(
(0|1) + . . .+ (i− 1|i)

)
∈

m⊕
i=1

HomA(Qi, Qi) ⊂ B;

and so the differential in Q ⊗B Q∗ is equal to b ⊗ Id + Id ⊗ b = 2(b ⊗ Id) = 0. Since the
differential in A is trivial as well, it thus suffices to show that ψ is a homotopy equivalence.

However, we have already seen that Q is homotopy equivalent to a sum of complexes
of the form iB → i−1B where iB = HomA(Qi, Q), and an analogous argument shows
that Q∗ is homotopy equivalent to a sum of complexes of the form Bi−1 → Bi where
Bi := HomA(Q,Qi), and B is homotopy equivalent to a sum of complexes of the form

iBj−1 → (i−1Bj−1 ⊕ iBj) → i−1Bj where iBj := HomA(Qi, Qj). Moreover, one can check
that under these various homotopy equivalences, the map ψ corresponds to the canonical
map from (iB → i−1B) ⊗B (Bj−1 → Bj) to iBj−1 → (i−1Bj−1 ⊕ iBj) → i−1Bj , and now
the fact that ψ is a homotopy equivalence follows from the identities

iB ⊗B Bj = (i1i)B ⊗B B(j1j) = (i1i)B(j1j) = iBj .

�

To understand the braid group action on D∞(BKh), recall (see [21, Sec. 2d]) that
Khovanov-Seidel associate

• to the elementary Artin generator σ+
k the dg A–bimodule

Mσ+
k

:= 0 // Pk ⊗ kP
βk // A // 0 ,

where βk is the A–bimodule map specified by βk((k)⊗ (k)) = (k), and
• to the elementary Artin generator σ−k the dg A–bimodule

Mσ−k
:= 0 // A

γk // Pk ⊗ kP{−1} // 0 ,

where

γk(1) = (k − 1|k)⊗ (k|k − 1) + (k + 1|k)⊗ (k|k + 1) + (k)⊗ (k|k − 1|k) + (k|k − 1|k)⊗ (k).

Here, “1” denotes the identity element 1 =
∑m
i=0(i).

We can therefore understand the induced braid group action on D∞(BKh) by understand-
ing the images of Mσ±k

under the derived equivalence D∞(A)→ D∞(B)→ D∞(BKh).

Accordingly, we denote by M̃σ+
k

(resp., M̃σ−k
) the mapping cone

0 // HomA (
⊕m

i=0Qi, Pk)⊗HomA

(
Pk,
⊕m

j=0Qj

)
β̃k // B // 0

(resp.,

0 // B
γ̃k // HomA (

⊕m
i=0Qi, Pk)⊗HomA

(
Pk,
⊕m

j=0Qj

)
{−1} // 0 ),

considered as a BKh-BKh dg bimodule.
After an application of Lemma 3.10:

HomA

(
m⊕
i=0

Qi, Pk

)
⊗HomA

Pk, m⊕
j=0

Qj

 =

(
m⊕
i=0

iQ

)
⊗A Pk ⊗ kP ⊗A

(
m⊕
i=0

Qj

)
,

the induced maps β̃k, γ̃k can be described as β̃k = Id⊗ βk ⊗ Id and γ̃k = Id⊗ γk ⊗ Id.
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To further streamline notation, we set

P̃k := HomA

(
m⊕
i=0

Qi, Pk

)
and

kP̃ := HomA

Pk, m⊕
j=0

Qj

 .

We will also find it convenient to replace the mapping cones M̃σ±k
with simpler, quasi-

isomorphic, mapping cones. We do this by replacing each bimodule B and P̃k ⊗ kP̃ by its

homology and the maps β̃k, γ̃k by the induced maps on homology.
We already understand the structure of BKh = H∗(B) (Lemma 3.12). The homology of

P̃k (resp., kP̃ ) is described by:

Lemma 3.16. P̃k (resp., kP̃ ) is formal as a left (resp., right) BKh module.

Furthermore, PKhk := H∗

(
P̃k

)
and kP

Kh := H∗

(
kP̃
)

have the following explicit de-

scriptions.
PKhk = SpanF〈u∗,v∗〉, kP

Kh = SpanF〈u,v〉
where the bigradings of u∗,v∗,u,v are given by:

gr(u∗) = (0, 1), gr(v∗) = (1, 0), gr(u) = (0, 0), gr(v) = (−1, 1),

and left multiplication by a generator θ ∈ BKh on PKhk is given by:

θ · u∗ =

{
u∗ if θ = k1k,
0 otherwise.

θ · v∗ =

 v∗ if θ = k−11k−1

u∗ if θ = kxk−1,
0 otherwise.

and right multiplication by a generator θ ∈ BKh on kP
Kh is given by:

u · θ =

 u if θ = k1k

v if θ = kxk−1

0 otherwise.
v · θ =

{
v if θ = k−11k−1

0 otherwise.

Proof. By Lemma 3.10, HomA(Qi, Pk) is given by the complex iQ⊗APk and HomA(Pk, Qi)
by kP ⊗A Qi, where

iQ := 0P 1P
(0|1)·oo . . .

(1|2)·oo
iP

(i−1|i)·oo

This implies that P̃k, kP̃ are given by:

P̃k :=

m⊕
i=0

0Pk 1Pk
(0|1)·oo . . .

(1|2)·oo
iPk

(i−1|i)·oo

kP̃ :=

m⊕
i=0

kP0

·(0|1) //
kP1

·(1|2) // . . . ·(i−1|i)//
kPi

We see from above that iQ⊗A Pk is:

• 0 when i < k − 1,
• rank one, generated by (k − 1|k) ∈ k−1Pk, with 0 differential, when i = k − 1,
• a direct sum of Span〈(k|k − 1|k)〉 ⊂ kPk and the acyclic subcomplex

(k − 1|k)← (k) ⊂ {k−1Pk ← kPk}
when i = k, and
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• a direct sum of the two acyclic subcomplexes

(k − 1|k)← (k) ⊂ {k−1Pk ← kPk} and (k|k − 1|k)← (k + 1|k) ⊂ {kPk ← k+1Pk}
when i > k.

To show formality of P̃k, we use Lemma 2.25 to show that all induced multiplications

m(n−1|1|0) :
(
BKh

)⊗n−1 ⊗H∗(HomA(Qi, Pk))→ H∗(HomA(Qj , Pk))

vanish for n > 2.
When i ≤ k − 1, HomA(Qi, Pk) has trivial differential, so the maps ιi, pi, hi are clear. In

the case i ≥ k, we define:

ιi : H∗ (HomA(Qi, Pk))→ HomA(Qi, Pk),

pi : HomA(Qi, Pk)→ H∗ (HomA(Qi, Pk)) , and

hi : HomA(Qi, Pk)→ HomA(Qi, Pk)[−1]

as follows.
Let θ denote any generator of HomA(Qi, Pk), let u∗ denote the lone generator ofH∗(HomA(Qk, Pk)),

and let ∂ denote the differential on the complex HomA(Qi, Pk). Note thatH∗(HomA(Qi, Pk)) =
0 for i > k. Then we define ιi, pi, hi to be the F–linear extensions of:

ιk(u∗) := (k|k − 1|k)

ιi>k := 0

pi(θ) :=

{
u∗ if i = k and θ = (k|k − 1|k)
0 otherwise

and

hi(θ) :=

{
∂−1(θ) if θ ∈ Im(∂),
0 otherwise.

In the above, ∂−1(θ) is defined to be the (unique) basis element θ′ satisfying ∂(θ′) = θ.
It is now straightforward to verify that

(1) pihi = 0 for all i, and
(2) Im(hi) and Im(∂) are left BKh-submodules.

Therefore P̃k is formal by Lemma 2.25.

To see that kP̃ is also formal, we perform a very similar computation, observing that kP̃
satisfies the assumptions of Lemma 2.24 as a right BKh–module, hence is formal.

Now, we simply note that H∗(P̃k) is rank 2, generated by

• u∗ := pk(k|k − 1|k) ∈ kPk ⊂ HomA (Qk, Pk) and
• v∗ := pk−1(k − 1|k) ∈ k−1Pk ⊂ HomA (Qk−1, Pk),

as is H∗(kP̃ ), generated by

• u := pk(k) ∈ kPk ⊂ HomA (Pk, Qk) and
• v := pk−1(k|k − 1) ∈ kPk−1 ⊂ HomA (Pk, Qk−1).

Recalling (see the proof of Lemma 3.12) that the generators i1j (for i ≥ j) and ixj (for
i > j) of BKh are represented by (0) + . . .+ (j) and (1|0) + . . .+ (j + 1|j), we see that the
multiplication is also as claimed. �

We now have the proposed model

MC

(
PKhk ⊗ kP

Kh
βKh
k // BKh

)
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for MKh
σ+
k

and the model

MC

(
BKh

γKh
k // PKhk ⊗ kP

Kh{−1}

)
for MKh

σ−k
, where βKhk and γKhk are the A∞ morphisms on homology induced by β̃k and γ̃k.

To understand the induced maps on homology, we must explicitly understand the quasi-

isomorphisms B ↔ BKh and P̃k ⊗ kP̃ ↔ PKhk ⊗ kP
Kh.

Explicitly, if ιP ⊗ ι′P : PKhk ⊗ kP
Kh → P̃k ⊗ kP̃ and pB : B → BKh are A∞ quasi-

isomorphisms, then the induced A∞ morphism on homology is given by:

βKhk = pB ◦ β̃k ◦ (ιP ⊗ ι′P ) : PKhk ⊗ kP
Kh → BKh.

Furthermore, (cf. [37, Cor. 3.16]), the mapping cones satisfy:(
0 // PKhk ⊗ kP

Kh
βKh
k =pB◦β̃k◦(ιP⊗ι′P ) // BKh // 0

)
=(

0 // P̃k ⊗ kP̃
β̃k // B // 0

)
as elements of D∞(BKh).

Similarly, if ιB : BKh → B and pP : P̃k⊗kP̃ → PKhk ⊗kPKh are A∞ quasi-isomorphisms,
then: (

0 // BKh
γKh
k =(pP⊗p′P )◦β̃k◦ιB // PKhk ⊗ kP

Kh{−1} // 0

)
=(

0 // B
γ̃k // P̃k ⊗ kP̃{−1} // 0

)
as elements of D∞(BKh).

Proposition 3.17. The image of Mσ−k
∈ D∞(A) under the derived equivalence D∞(A)→

D∞
(
BKh

)
is MC

(
γKhk

)
, where

γKhk : BKh → PKhk ⊗ kP
Kh{−1}

is the F–linear BKh–bimodule map (i.e., strict A∞ morphism) determined by

i1i 7→

 v∗ ⊗ v when i = k − 1,
u∗ ⊗ u when i = k, and

0 otherwise.

Accordingly, we define MKh
σ−k

:= MC
(
γKhk

)
Proof. We must compute the terms of the induced A∞ morphism γKhk := (pP ⊗p′P )◦ β̃k ◦ιB ,
as described above.

We begin by noting that the (n1|1|n2) map of the A∞ morphism γKhk , i.e., the map(
γKhk

)
(n1|1|n2)

:
(
BKh

)⊗n1 ⊗BKh ⊗
(
BKh

)⊗n2 →
(
PKhk ⊗ kP

Kh
)
{−1}

is degree (−(n1 + n2), 0) with respect to the bigrading. This follows from the A∞ relations
for morphisms, combined with Lemma 3.11.
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An examination of the bigradings of elements of BKh and PKhk ⊗kPKh then immediately
implies that

(
γKhk

)
(n1|1|n2)

= 0 unless n1 = n2 = 0, so γKhk is a strict A∞ isomorphism, as

desired. A quick way to see this is to notice that the sum of the two gradings associated to
each element in BKh and

(
PKhk ⊗ kP

Kh
)
{−1} is 0, and (γk)(n1|1|n2) is degree −(n1 + n2)

on this sum.
It is now easy to verify that(

γKhk
)

:=
(
γKhk

)
(0|1|0)

= (pP ⊗ p′P )(0|1|0) ◦ γ̃k ◦ (ιB)(0|1|0)

is as described. In particular, γKhk is determined by its behavior on the (m+1) idempotents

i1i ∈ BKh, since it is a BKh–bimodule map.
For example:

γKhk (k−11k−1) := (pP )(0|1|0) ◦ γ̃k ◦ (ιB)(0|1|0) (k−11k−1)

= (pP )(0|1|0) ◦ γ̃k [(0) + . . .+ (k − 1)]

= (pP )(0|1|0) [(k − 1|k)⊗ (k|k − 1)]

= v∗ ⊗ v

We leave the remaining similarly straightforward computations to the reader. �

Proposition 3.18. The image of Mσ+
k
∈ D∞(A) under the derived equivalence D∞(A)→

D∞
(
BKh

)
is MC

(
βKhk

)
, where the terms of the A∞ morphism βKhk are given as follows.

(
βKhk

)
(n1|1|n2)

:
(
BKh

)⊗n1 ⊗
(
PKhk ⊗ kP

Kh
)
⊗
(
BKh

)⊗n2 → BKh

is identically zero unless n1 + n2 = 1.
When n1 = 1, n2 = 0:(

βKhk
)

(1|1|0)
: BKh ⊗

(
PKhk ⊗ kP

Kh
)
→ BKh

is the trilinear map satisfying:

(
βKhk

)
(1|1|0)

:


[i1k ⊗ (u∗ ⊗ u)] 7→ ixk (i ≥ k + 1)

[i1k−1 ⊗ (v∗ ⊗ u)] 7→ i1k (i ≥ k)
[ixk−1 ⊗ (v∗ ⊗ u)] 7→ ixk (i ≥ k + 1)

[i1k−1 ⊗ (v∗ ⊗ v)] 7→ ixk−1 (i ≥ k)

and
(
βKhk

)
(1|1|0)

(b⊗ θ) = 0 for all other basis elements b ∈ BKh, θ ∈
(
PKhk ⊗ kP

Kh
)
.

When n1 = 0, n2 = 1:(
βKhk

)
(0|1|1)

:
(
PKhk ⊗ kP

Kh
)
⊗BKh → BKh

is the trilinear map satisfying:

(
βKhk

)
(0|1|1)

:


[(u∗ ⊗ u)⊗ k1j ] 7→ kxj (j ≤ k − 1)

[(v∗ ⊗ u)⊗ k1j ] 7→ k−11j (j ≤ k − 1)
[(v∗ ⊗ u)⊗ kxj ] 7→ k−1xj (j ≤ k − 2)

[(v∗ ⊗ v)⊗ k−11j ] 7→ k−1xj (j ≤ k − 2)

and
(
βKhk

)
(0|1|1)

(θ ⊗ b) = 0 for all other basis elements b ∈ BKh, θ ∈
(
PKhk ⊗ kP

Kh
)
.

Accordingly, we define MKh
σ+
k

:= MC
(
βKhk

)



QUIVER ALGEBRAS AND BORDERED FLOER HOMOLOGY 29

Proof. As in the proof of Proposition 3.17, the (n1|1|n2) map of the A∞ morphism βKhk is
degree (−(n1 + n2), 0) with respect to the bigrading.

In this case, however, we see that the sum of the two gradings for each element in
PKhk ⊗ kPKh is 1, while the sum of the two gradings associated to each element in BKh is 0.
Since

(
βKhk

)
(n1|1|n2)

is degree −(n1 + n2) on this sum, we conclude that
(
βKhk

)
(n1|1|n2)

= 0

unless −(n1 + n2) = −1, as claimed.
To calculate

(
βKhk

)
(n1|1|n2)

in the relevant cases (n1 = 1, n2 = 0) and (n1 = 0, n2 = 1),

we recall that βKhk : PKhk ⊗ kP
Kh → BKh is given by the composition

PKhk ⊗ kP
Kh ι⊗ι′ // P̃k ⊗ kP̃

β̃k // B
p // BKh .

Calculation of
(
βKhk

)
(1|1|0)

:

Since β̃k is, by definition, a strict A∞ morphism, we see that(
βKhk

)
(1|1|0)

:= p(1|1|0) ◦ β̃k ◦
(
ι(0|1|0) ⊗ ι′(0|1|0)

)
+ p(0|1|0) ◦ β̃k ◦

(
ι(1|1|0) ⊗ ι′(0|1|0)

)
.

Furthermore, we showed during the proof of Lemma 3.14 that p(1|1|0) := 0, so the first
term above also vanishes, leaving:

(
βKhk

)
(1|1|0)

:= p(0|1|0) ◦ β̃k ◦
(
ι(1|1|0) ⊗ ι′(0|1|0)

)
.

Another application of the Transfer Theorem [8, Thm. 2.1] tells us that on basis elements
b ∈ BKh and θ ∈ PKhk , we have

ι(1|1|0) [b⊗ θ] =


(k + 1|k) ∈ HomA(Qi, Pk) when b = i1k, θ = u∗, and i ≥ k + 1,

(k) ∈ HomA(Qi, Pk) when b = i1k, θ = v∗, and i ≥ k,
(k + 1|k) ∈ HomA(Qi, Pk) when b = ixk, θ = v∗, and i ≥ k + 1, and

0 otherwise.

Composing the above with p(0|1|0) ◦ β̃k yields the desired result. We perform this com-
putation in one case, leaving the small number of remaining (similarly straightforward)
computations to the reader. Assume i ≥ k + 1. Then:(

βKhk
)

(1|1|0)
(i1k ⊗ (u∗ ⊗ u)) := p(0|1|0) ◦ β̃k ◦

[
ι(1|1|0)(i1k ⊗ u∗)⊗ ι′(0|1|0)(u)

]
= p(0|1|0) ◦ β̃k [(k + 1|k)⊗ (k)]

= p(0|1|0)[(k + 1|k)]

= ixk

Calculation of
(
βKhk

)
(0|1|1)

: Similarly, we have:(
βKhk

)
(0|1|1)

:= p(0|1|1) ◦ β̃k ◦
(
ι(0|1|0) ⊗ ι′(0|1|0)

)
+ p(0|1|0) ◦ β̃k ◦

(
ι(0|1|0) ⊗ ι′(0|1|1)

)
,

and an application of Lemma 2.24 (see the proof of Lemma 3.16) implies that ι′(0|1|1) := 0,

leaving: (
βKhk

)
(0|1|1)

:= p(0|1|1) ◦ β̃k ◦
(
ι(0|1|0) ⊗ ι′(0|1|0)

)
.
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Referring to Lemma 3.14, we again perform a sample computation, leaving the remaining
computations to the reader. Assume j ≤ k − 1. Then:(

βKhk
)

(0|1|1)
((v∗ ⊗ u)⊗ k1j) := p(0|1|1) ◦

(
β̃k[(k − 1|k)⊗ (k)]⊗ k1j

)
= p(0|1|1) [(k − 1|k)⊗ k1j ]

= k−11j

�

Now, if we have a general braid group element σ ∈ Bm+1 that decomposes as σ =
σ±k1
· · ·σ±kn , [21] associates to σ ∈ Bm+1 the dg bimodule:

Mσ :=Mσ±k1

⊗A . . .⊗AMσ±kn

over the algebra A (or, rather, its equivalence class in Db(A)).
Considered as an element of D∞(A), we can alternatively describe Mσ in terms of an

A∞ tensor product, by the following.

Definition 3.19. [20, Defn. 1] Given rings A,B, an A-B bimodule M is called sweet if it
is finitely-generated and projective as a left A module and as a right B module.

Remark 3.20. The tensor product N⊗AM of an A′-A bimodule N with an A-B bimodule
is a sweet A′-B bimodule.

Since eachMσ±k
is a bounded complex of sweet bimodules over A whose higher multipli-

cations are all trivial, the ordinary tensor product above agrees with the A∞ tensor product
in D∞(A). In other words,

Mσ :=Mσ±k1

⊗̃A . . . ⊗̃AMσ±kn

.

Since A∞ tensor products are sent to A∞ tensor products under the derived equivalence
D∞(A) ↔ D∞(B) ↔ D∞(BKh), we see that the element of D∞(BKh) associated to a
general braid σ = σ±k1

· · ·σ±kn ∈ Bm+1 is given by:

MKh
σ :=MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

.

Remark 3.21. The BKh modules described here (and, more generally, any A∞ module
over the Hom algebra of a basis of curves) are equipped with three gradings:

(1) a (co)homological grading,
(2) an internal grading counting steps to the left in the path algebra, Am, which corre-

sponds to the power of t under the identification of the Khovanov-Seidel construction
with a categorification of the Burau representation (see [21, Sec. 2e]),

(3) a grading by path length in the path algebra, Am, which corresponds to Khovanov’s
j (quantum) grading if one identifies the Khovanov-Seidel quiver algebra Am with
the algebra A1,m appearing in [10, 39].

The first two of these gradings constitute the bigrading described in [21, Sec. 3d] and
discussed throughout this section.

For the benefit of those readers interested in the trigradings of generators of BKh, PKhk ,
and kP

Kh, we record them here:

• gr(i1j) = (0, 0, 0) for i1j ∈ iBj for all i, j ∈ {0, . . . ,m},
• gr(ixj) = (−1, 1, 1) for ixj ∈ iBj for all i > j ∈ {0, . . . ,m},
• gr(v∗) = (1, 0, 1) and gr(u∗) = (0, 1, 2) for v∗,u∗ ∈ PKhk for all k ∈ {1, . . . ,m}, and
• gr(v) = (−1, 1, 1) and gr(u) = (0, 0, 0) for v,u ∈ kP

Kh for all k ∈ {1, . . . ,m}.
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3.5. BKh and Fukaya categories. For completeness, and to motivate the constructions in
the next section, we briefly outline (without proofs) a geometric interpretation of the algebra
BKh and the bimodules MKh

σ±i
, in terms of the Fukaya category of a suitable Lefschetz

fibration [35, 37].
Namely, denote by p a polynomial of degree m+ 1 whose roots are exactly the points of

∆, and consider the complex surface S = {(x, y, z) ∈ C3 |x2 + y2 = p(z)}. The projection
to the z coordinate defines a Lefschetz fibration πS : S → C, whose generic fiber is an affine
conic, and whose m + 1 vanishing cycles are all isotopic to each other. The basis of arcs
Q = {q0, . . . , qm} of Figure 5 then determines a collection of Lefschetz thimbles QS0 , . . . , Q

S
m

(i.e., Lagrangian disks in S whose boundaries are the vanishing cycles in the fiber π−1
S (−1)).

These form an exceptional collection which generates the Fukaya category F(πS) of the
Lefschetz fibration πS [37].

Perturbing the symplectic structure slightly, we can ensure that the vanishing cycles
(which are Hamiltonian isotopic loops in π−1

S (−1) ' C∗) are mutually transverse and in-
tersect in a suitable manner (i.e., they pairwise intersect in exactly two points, and the
intersection points are arranged in a configuration which forces the vanishing of higher
products on Floer complexes within the ordered collection).

The Floer complexes which determine morphisms from QSi to QSj whenever i > j then
have rank 2, while by definition these morphism spaces have rank 1 for i = j and 0 for
i < j [35]. (Note: our ordering convention for bases of arcs is the opposite of Seidel’s.)
Moreover, an easy calculation in Floer homology then shows that

BS :=

m⊕
i,j=0

HomF(πS)(Q
S
i , Q

S
j )

is isomorphic to BKh (viewing both as A∞-algebras, in which mn happens to vanish for
n 6= 2). The categories of modules over F(πS) and BKh are therefore equivalent.

In fact, the BKh-module PKhk has a geometric counterpart via this equivalence, namely
a Lagrangian sphere PSk in S which projects under πS to a line segment connecting two
consecutive points of ∆. Indeed, PSk intersects QSk−1 and QSk in one point each, and is

disjoint from the other QSi ; it is then not hard to check that
⊕

i HomF(πS)(Q
S
i , P

S
k ) ' PKhk

as an A∞-module over BS ' BKh). See Chapter 20 of [37] for more about the symplectic
geometry of S.

Elements of the braid group Bm+1 acting on (Dm,∆) lift to symplectic automorphisms
of S preserving the fiber π−1

S (−1); specifically, the Artin generator σk lifts to the Dehn twist
about the Lagrangian sphere PSk . Denoting again by σ the symplectic automorphism of S
which corresponds to a braid σ ∈ Bm+1, we associate to it the A∞-bimodule

MS
σ =

m⊕
i,j=0

HomF(πS)(Q
S
i , σ(QSj ))

over BS ' BKh. It then follows from Seidel’s long exact sequence for Dehn twists [36]
that the bimodules MS

σ±k
and MKh

σ±k
associated to Artin generators (or their inverses) are

quasi-isomorphic.

4. Bordered Floer algebras and bimodules

We now consider the analogues in bordered Floer homology of the Khovanov-Seidel bi-
modules described in Section 3. We follow Lipshitz-Ozsváth-Thurston in [27, 28, 29] and
Zarev in [42], using a symplectic reinterpretation of their work due to the first author [3].
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4.1. The bordered Floer algebra. Denote by Σ the double cover of Dm branched at the
m + 1 points of ∆ (with covering map πΣ : Σ → Dm). We make Σ a parametrized surface
by equipping it with two marked points z± on its boundary (the two preimages by πΣ of a
point in ∂Dm) and the collection of arcs QΣ = {QΣ

0 , . . . , Q
Σ
m}, where QΣ

k = π−1
Σ (qk).

In the language introduced by Lipshitz, Ozsváth and Thurston [27], the parametrized
surface (Σ, z±,QΣ) is described combinatorially by a (twice) pointed matched circle (or
pair of circles when m is odd), ZQ. This consists of a pair of oriented intervals (the two
components of ∂Σ \ {z±}), each carrying m + 1 distinguished points (the end points of
disjoint pushoffs of the QΣ

k ), labeled successively in decreasing order m, . . . , 1, 0 along each
interval (according to the manner in which the end points of the 1-handles QΣ

k match up).
Recall that the 1–moving strands algebra A (ZQ, 1),4 which we also denote by BHF for

consistency with the preceding sections, can be described as:

A (ZQ, 1) =

m⊕
i,j=0

iB
HF
j ,

where

iB
HF
j = SpanF

 0 if i < j,

i1i if i = j,

iρj , iσj if i > j

 ,

and the multiplication mHF
2 : iB

HF
j ⊗ jB

HF
k → iB

HF
k is defined by

• mHF
2 (i1i ⊗ a) = mHF

2 (a⊗ j1j) = a for all a ∈ iB
HF
j , and

• mHF
2 (iρj ⊗ jρk) = iρk and mHF

2 (iσj ⊗ jσk) = iσk, but
mHF

2 (iρj ⊗ jσk) = mHF
2 (iσj ⊗ jρk) = 0.

As usual, the multiplication map mHF
2 : iB

HF
j ⊗ kB

HF
` → iB

HF
` is zero unless j = k. We

also set mHF
n = 0 for n 6= 2.

Remark 4.1. Let Fρ⊕Fσ denote the F-algebra generated by two orthogonal idempotents ρ
and σ, and let 1 := ρ+σ be its identity element. As we did in the previous section for BKh

(Remark 3.13), we can interpret BHF as the algebra of all lower triangular (m+1)×(m+1)
matrices over Fρ⊕ Fσ which have only 0’s and 1’s on the main diagonal:

BHF ∼=




d0 0 . . . 0

φ1,0 d1
. . .

...
...

. . .
. . . 0

φm,0 . . . φm,m−1 dm


∣∣∣∣∣∣∣∣∣∣
di ∈ {0, 1}

 ⊂Mm+1(Fρ⊕ Fσ)

We identify the generator iρj ∈ iB
HF
j (resp., iσj ∈ iB

HF
j ) with the (m+1)×(m+1) matrix

whose only nonzero matrix entry is a ρ (resp., a σ), located in row number i and column
number j; and we identify the generator i1i ∈ iB

HF
i with the (m + 1) × (m + 1) matrix

whose only nonzero entry is a 1, located on the diagonal in row number i. (Here we assume
that rows and columns are numbered from 0 to m).

The 1-moving strands algebra has a more geometric interpretation in terms of the arcs
QΣ

0 , . . . , Q
Σ
m on the surface Σ. Namely, these arcs (or small isotopic deformations of them)

are objects of (and in fact generate) the “partially wrapped” Fukaya category of Σ relatively
to the two marked points z± (see [2, 3]). In this category, the morphism spaces hom(QΣ

i , Q
Σ
j )

4Here we use the notation convention from [42], which differs by a shift from the one in [27]. See the
note in [42, Sec. 2.2].
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are the Floer complexes generated by intersections between suitably perturbed copies of the
arcs (pushing the end points by Hamiltonian isotopies so that they lie in a specific position
along the components of ∂Σ \ {z±}). In our case, {z±} is a fiber of the covering map
πΣ, which is in fact a Lefschetz fibration. The partially wrapped Fukaya category is then
equivalent to F(πΣ), Seidel’s Fukaya category of the Lefschetz fibration πΣ (see the Remark
in section 4 of [2]), and the QΣ

i are nothing but the Lefschetz thimbles associated to the
basis of arcs Q of Figure 5.

The Floer complexes which determine morphisms from QΣ
i to QΣ

j whenever i > j then
have rank 2 (the vanishing cycles consist of the same two points), while by definition these
morphism spaces have rank 1 for i = j and 0 for i < j [35]. (As before, our ordering con-
vention for bases of arcs is the opposite of Seidel’s.) An easy calculation in Floer homology
shows that

BΣ :=

m⊕
i,j=0

HomF(πΣ)(Q
Σ
i , Q

Σ
j )

is isomorphic to BHF , viewing both as A∞-algebras in which mn happens to vanish for
n 6= 2 (cf. [2, 3]). The categories of modules over F(πΣ) and BHF are therefore equivalent.

4.2. Bordered Floer bimodules. Elements of the braid group Bm+1 acting on (Dm,∆)
lift to elements of the mapping class group of the double cover Σ; specifically, the Artin
generator σk lifts to the Dehn twist about the simple closed curve PΣ

k = π−1
Σ (pk), where

pk is the line segment in Dm joining the two points labeled k − 1 and k (see Figure 7).
We denote by σ̂ the mapping class group element which lifts a braid σ ∈ Bm+1. With
this understood, there are two natural ways of associating an A∞-bimodule over BHF to a
braid σ.

On one hand, Lipshitz, Ozsváth and Thurston [28] associate to the element σ̂ of the

mapping class group a bimodule ĈFDA(σ̂) over the strands algebra, defined in terms of a
suitable Heegaard diagram for the “mapping cylinder” of σ̂, i.e. the 3-manifold Σ × [0, 1]
equipped with parametrizations of the two boundary components which differ by the action

of σ̂ (see [27, 28] for details). We denote by MHF
σ the 1-moving strand part of ĈFDA(σ̂);

this is an A∞-bimodule over BHF (in fact a “type DA” bimodule, which has nicer algebraic
properties).

On the other hand, σ̂ acts on the Fukaya category of πΣ, and the A∞-functor induced
by σ̂ naturally yields a bimodule over F(πΣ), hence over BΣ. More concretely, following [2]
(see also [29]) we set

MΣ
σ :=

m⊕
i,j=0

HomF(πΣ)

(
QΣ
i , σ̂(QΣ

j )
)
,

which is naturally an A∞-bimodule over BΣ ' BHF .

Lemma 4.2. The A∞-bimodules MΣ
σ and MHF

σ are quasi-isomorphic.

Proof. It is known [28] that the bordered bimodule ĈFDA(id) is quasi-isomorphic to the
strands algebra viewed as a bimodule over itself; therefore MHF

id ' BHF ' BΣ ' MΣ
id (as

bimodules). We now give a more geometric interpretation, still in the case σ = id.
Following the terminology in [29], denote by AZ the bordered Heegaard diagram depicted

in Figure 6, in which the α-arcs and the β-arcs are obtained from QΣ
k by pushing the end

points along the boundary of Σ, in such a manner that the end points of the α-arcs all
lie before those of the β-arcs along the oriented intervals ∂Σ \ {z±}. Then the 1-moving

strand part of the A∞-bimodule ĈFAA(AZ) is quasi-isomorphic to MHF
id ' BHF ; in fact,
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α0 . . . αm
βm. . .
β0

Figure 6. A Heegaard diagram for the identity mapping class on Σ (the
left and right hand side pictures are glued according to the numbers). Note
that the α and β arcs are perturbed copies of the arcs QΣ

k .

ĈFAA(AZ) ' ĈFDA(id) ' A(ZQ) [3, 42, 29]. Thus it is enough to show that the 1-moving

strand part of ĈFAA(AZ) is quasi-isomorphic to MΣ
id = BΣ.

To understand this, recall that morphisms in F(πΣ) are computed by perturbing the
arcs to the same positions used in the Heegaard diagram AZ. Hence, the generators of
Hom(QΣ

i , Q
Σ
j ) are precisely the intersection points between βi and αj , i.e. the generators of

the 1-moving strand type AA bimodule. Moreover, the structure maps m(k|1|`) count:

• in the case of the type AA bordered Floer bimodule ĈFAA(AZ), holomorphic strips
in Σ connecting two generators of the Heegaard-Floer complex, and with k (resp.
`) additional strip-like ends corresponding to chords between β (resp. α) arcs;

• in the case ofMΣ
id (bimodule over the Fukaya category), rigid holomorphic polygons

bounded by k+ 1 successively perturbed copies of the β-arcs and `+ 1 successively
perturbed copies of the α-arcs.

However, there is a natural correspondence between these two types of objects; see Propo-
sition 6.5 of [3] and its proof for details.

In the case of an arbitrary braid σ, denote by σ̂(AZ) the bordered Heegaard diagram
obtained from AZ by having σ̂ act on the α-arcs (leaving the β-arcs unchanged). From the
perspective of Heegaard-Floer theory, the bordered 3-manifold represented by σ̂(AZ) differs
from that corresponding to AZ by a reparametrization of its α-boundary via the action of
σ̂, or equivalently, by attaching the mapping cylinder of σ̂. Thus

ĈFAA(σ̂(AZ)) ' ĈFAA(AZ) ⊗̃ ĈFDA(σ̂) ' ĈFDA(σ̂).

Hence MHF
σ is quasi-isomorphic to the 1-moving strands part of ĈFAA(σ̂(AZ)). On the

other hand, by the same argument as above this latter bimodule is quasi-isomorphic to
MΣ

σ =
⊕

i,j HomF(πΣ)(Q
Σ
i , σ̂(QΣ

j )). �

If a braid σ can be expressed in terms of the Artin generators as σ = σ±k1
. . . σ±kn , then its

lift can be written as σ̂ = σ̂±k1
. . . σ̂±kn , and the pairing theorem for CFDA bimodules [27, 28]

implies that

MHF
σ 'MHF

σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

.

Thus it is enough to understand the bimodules MHF
σ±k
' MΣ

σ±k
associated to the Artin

generators and their inverses. We do this working in the category F(πΣ). Recall that
morphism spaces in that category are defined by Lagrangian Floer theory after a suitable
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perturbation (so the end points of arcs lie in the correct order along the boundary of Σ); in
particular they are generated by intersection points.

Focusing first on MHF
σ+
k

, and recalling that σ̂+
k is the positive Dehn twist about PΣ

k ,

Seidel’s exact triangle for Lagrangian Floer homology [36] tells us that, for each i, j ∈
{0, . . . ,m}, Hom

(
QΣ
i , σ̂

+
k (QΣ

j )
)

is quasi-isomorphic to the complex

0 // Hom
(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

) βHF
k // Hom

(
QΣ
i , Q

Σ
j

)
// 0 ,

where βHFk is the Floer product map (cf. [36]) induced by counting holomorphic triangles in
Σ whose sides lie on (suitable perturbations of) QΣ

i , P
Σ
k , Q

Σ
j , appearing in counterclockwise

order around the boundary. Moreover, these quasi-isomorphisms are compatible with Floer
products, in the sense that in D∞(BHF ) the bimodule MHF

σ+
k

is equivalent to the complex

of bimodules obtained by taking the direct sum of the above complexes over all i, j.
In analogy to the previous section, we introduce the A∞-modules

PHFk :=

m⊕
i=0

HomF(πΣ)(Q
Σ
i , P

Σ
k ) and kP

HF :=

m⊕
j=0

HomF(πΣ)(P
Σ
k , Qj),

which allows us to write

MHF
σ+
k

'
{

0 // PHFk ⊗ kP
HF

βHF
k // BHF //// 0

}
Like the linear term described above, the higher terms

(βHFk )(n1|1|n2) :⊕
i0,...,in1
j0,...,jn2

Hom(QΣ
in1
, QΣ

in1−1
)⊗ · · · ⊗Hom(QΣ

i1 , Q
Σ
i0)⊗Hom(QΣ

i0 , P
Σ
k )⊗

⊗Hom(PΣ
k , Q

Σ
j0)⊗ · · · ⊗Hom(QΣ

jn2−1
, QΣ

jn2
) −→

⊕
in1

,jn2

Hom(QΣ
in1
, QΣ

jn2
)

of the A∞-bimodule homomorphism βHFk count rigid holomorphic polygons in Σ whose
sides lie on (suitable perturbations of) QΣ

in1
, . . . , QΣ

i0
, PΣ

k , Q
Σ
j0
, . . . , QΣ

jn2
in that order.

Similarly, MHF
σ−k

is equivalent in D∞
(
BHF

)
to the direct sum of the complexes

0 // Hom
(
QΣ
i , Q

Σ
j

) γHF
k // Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
// 0 ,

where γHFk is induced by counting holomorphic triangles in Σ whose sides lie on (suitable
perturbations of) PΣ

k , Q
Σ
i , Q

Σ
j , appearing in counterclockwise order around the boundary.

Thus, in D∞(BHF ) we have

MHF
σ−k
'
{

0 // BHF
γHF
k // PHFk ⊗ kP

HF //// 0
}

where the higher terms of the A∞-bimodule homomorphism γHFk again count rigid holo-
morphic polygons in Σ.

We remark that, in our very simple setting, these counts are equivalent (by the Riemann
mapping theorem) to counts of topological immersed triangles in Σ with the stated boundary
conditions, and satisfying a local convexity condition at their corners.
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Figure 7. The top row above shows curves pk, qk−1, and qk in the disk
Dm, while the bottom row shows their lifts to Lagrangians in the double
branched cover Σ (the figures on the left and right are identified according to
the numbers). The shaded triangle gives rise to a non-trivial multiplication
map m(1|1|0) : Hom(QΣ

k , Q
Σ
k−1)⊗Hom(QΣ

k−1, P
Σ
k )→ Hom(QΣ

k , P
Σ
k ).

4.3. Explicit calculations. We now make the above story more explicit, by determining
the left (resp., right) A∞-modules PHFk (resp., kP

HF ) and the maps βHFk and γHFk . Since
PΣ
k intersects QΣ

k−1 and QΣ
k transversely once each and is disjoint from all the other QΣ

j ,
the vector spaces underlying these modules have rank 2. The multiplication maps

m(n|1|0) :
(
BHF

)⊗n ⊗ PHFk → PHFk and m(0|1|n) : kP
HF ⊗

(
BHF

)⊗n → kP
HF

are given by counting holomorphic (n + 2)–gons in Σ as in Figure 7. Again letting the
two generators of PHFk (resp., of kP

HF ) be denoted by u∗,v∗ (resp., by u, v) and letting
θ represent an element of BHF , it is easily verified (see Figure 8) that the m(1|1|0) (resp.,
m(0|1|1)) multiplication is given by:

θ · u∗ =

{
u∗ if θ = k1k,
0 otherwise.

θ · v∗ =

 v∗ if θ = k−11k−1,
u∗ if θ = kρk−1 or kσk−1,
0 otherwise.

(resp., given by:

u · θ =

 u if θ = k1k,
v if θ = kρk−1 or kσk−1,
0 otherwise.

v · θ =

{
v if θ = k−11k−1,
0 otherwise.

)
The multiplications m(1|1|0) and m(0|1|1) are associative. Moreover, the higher multipli-

cations are all identically zero. One way to see the vanishing of m(n|1|0) is to observe that,

for any sequence in ≥ · · · ≥ i1 ≥ i0 (n ≥ 2), and perturbing QΣ
i0
, . . . , QΣ

in
so that their

end points are in counterclockwise order along the boundary of Σ (but preserving minimal
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k−1
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Figure 8. The holomorphic triangles giving rise to the nontrivial multipli-
cation maps m(1|1|0) : Hom(QΣ

k , Q
Σ
k−1)⊗Hom(QΣ

k−1, P
Σ
k )→ Hom(QΣ

k , P
Σ
k ).

The other nontrivial multiplication maps can be seen in a similar manner.

intersection otherwise), there are no convex (n + 2)-gons with edges lying successively on
QΣ
in
, . . . , QΣ

i0
, PΣ

k (and similarly for the vanishing of m(0|1|n)).
A more conceptual explanation is that it is possible to find a trivialization of the tangent

bundle of Σ and graded lifts [37] of the Lagrangians PΣ
k , Q

Σ
0 , . . . , Q

Σ
m, and hence a Z-grading

by Maslov index on BHF and the modules PHFk , kP
HF , with the following properties:

• all the generators of BHF have degree 0;
• the generators u∗, v∗ of PHFk have the same degree.
• the generators u, v of kP

HF have the same degree.

Not all degrees can be taken to be zero: in fact deg u + deg u∗ = deg v + deg v∗ = 1.
Since the maps m(n|1|0) and m(0|1|n) are compatible with the grading and have degree

1− n, this forces their vanishing unless n = 1.

We now turn to the A∞ morphisms βHFk and γHFk . The calculations are simplified by
constraints arising from the Maslov Z-grading.

First, we observe that βHFk is a degree-preserving A∞-homomorphism of bimodules.
Namely, since (βHFk )(n1|1|n2) corresponds to a Floer product of order (n1 +n2 +2) in F(πΣ),

it has degree −(n1 + n2). However, PHFk ⊗ kP
HF is concentrated in degree 1, while all

the generators of BHF have degree 0. Therefore, the only non-trivial terms in βHFk are
those of degree −1, namely (βHFk )(1|1|0) and (βHFk )(0|1|1). In particular the linear term

βHFk : Hom
(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
→ Hom

(
QΣ
i , Q

Σ
j

)
vanishes identically.

Similarly, γHFk , which is an A∞-refinement of the pair of pants coproduct in Floer ho-
mology, has degree dimC(Σ) = 1 with respect to the Maslov Z-grading. Hence, the map
(γHFk )(n1|1|n2) has degree 1 − (n1 + n2) and, for degree reasons, it must vanish identically

unless n1 + n2 = 0. Thus, the only nontrivial term of γHFk is the linear one.
The calculations are further simplified by recalling that

• Hom
(
QΣ
i , P

Σ
k

)
= Hom

(
PΣ
k , Q

Σ
i

)
= 0 whenever i 6= k, k − 1 and

• Hom
(
QΣ
i , Q

Σ
j

)
= 0 whenever i < j.

Lemma 4.3. γHFk : BHF → PHFk ⊗ kP
HF is the bimodule map determined by

i1i 7→

 v∗ ⊗ v when i = k − 1,
u∗ ⊗ u when i = k, and

0 otherwise
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(QΣ
k )1

PΣ
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Figure 9. The above diagram verifies both that the linear part of

βHFk : Hom
(
QΣ
k , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
k

)
→ Hom

(
QΣ
k , Q

Σ
k

)
is zero, and that the map

γHFk : Hom
(
QΣ
k , Q

Σ
k

)
→ Hom

(
QΣ
k , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
k

)
sends k1k ∈ Hom

(
QΣ
k , Q

Σ
k

)
to u∗ ⊗ u ∈ Hom

(
QΣ
k , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
k

)
.

By definition, these maps count holomorphic triangles with boundary on
PΣ
k and on two perturbed copies of QΣ

k , denoted by (QΣ
k )1 and (QΣ

k )2 in
the picture; in counterclockwise order, the successive edges must lie on
(QΣ

k )1, P
Σ
k , (Q

Σ
k )2 for βHFk , and on PΣ

k , (Q
Σ
k )1, (Q

Σ
k )2 for γHFk . Hence, the

shaded topological triangle does not contribute to βHFk , because its bound-
ary has the incorrect orientation, hence it does not admit a holomorphic
representative. However, it does contribute to the map γHFk . Computations
for the pairs (i, j) = (k, k − 1), (k − 1, k − 1) are similarly straightforward.

and by associativity with respect to the multiplication. Moreover, the higher order maps
(γHFk )(n1|1|n2) vanish identically for (n1, n2) 6= (0, 0).

Proof. The map γHFk : Hom
(
QΣ
i , Q

Σ
j

)
→ Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
is 0 unless (i, j) =

(k, k), (k − 1, k − 1), or (k, k − 1), since in all other cases either the domain or the target
is zero. The nontrivial cases are then determined by counting immersed triangles in Σ; the
case (i, j) = (k, k) is shown in Figure 9. By inspection, we see that γHFk is given by:

• When (i, j) = (k, k) or (k−1, k−1), γHFk sends the unique generator of Hom
(
QΣ
i , Q

Σ
j

)
to the unique generator of Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
, and

• When (i, j) = (k, k − 1), γHFk sends both kρk−1 and kσk−1 ∈ Hom
(
QΣ
i , Q

Σ
j

)
to the

unique generator of Hom
(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
.

The vanishing of the higher maps follows from the degree argument explained above. �

The story for βHFk is slightly more complicated, because the maps

(βHFk )(1|1|0) : Hom(QΣ
i1 , Q

Σ
i0)⊗Hom(QΣ

i0 , P
Σ
k )⊗Hom(PΣ

k , Q
Σ
j ) −→ Hom(QΣ

i1 , Q
Σ
j )

and

(βHFk )(0|1|1) : Hom(QΣ
i , P

Σ
k )⊗Hom(PΣ

k , Q
Σ
j0)⊗Hom(QΣ

j0 , Q
Σ
j1) −→ Hom(QΣ

i1 , Q
Σ
j ),

which count holomorphic 4-gons in Σ, depend on the choice of Hamiltonian perturbations
used to resolve triple intersections at the branch points of πΣ. (Of course, the behavior of
Lagrangian Floer homology under Hamiltonian isotopies guarantees that the maps obtained
from different choices are homotopic.) To fix a convention, we perturb PΣ

k away from the
branch points of πΣ in such a way that its intersections with QΣ

k and QΣ
k−1 occur on the

sheet of the double cover that contains the generators iρj . With this understood, we have:
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(QΣ
k )2

QΣ
i

(QΣ
k )1

(iρk)1
(iρk)2

u∗ u

(iσk)1 (iσk)2

Figure 10. The above diagram verifies that

(βHFk )(1|1|0)(iρk,u
∗ ⊗ u) = iρk and (βHFk )(1|1|0)(iσk,u

∗ ⊗ u) = 0

for i > k. By definition,

βHFk (1|1|0) : Hom(QΣ
i , Q

Σ
k )⊗Hom(QΣ

k , P
Σ
k )⊗Hom(PΣ

k , Q
Σ
k )→ Hom(QΣ

i , Q
Σ
k )

counts rigid holomorphic 4-gons with successive edges, in counterclockwise
order, on perturbed copies of QΣ

i , QΣ
k (denoted (QΣ

k )1), PΣ
k , and QΣ

k again

(denoted (QΣ
k )2). The only contribution comes from the shaded region.
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(QΣ
k )2

PΣ
k

QΣ
k−1

(QΣ
k )1

u

kρk−1

v∗

kσk−1

k1k

Figure 11. The above diagram verifies that

(βHFk )(1|1|0)(kρk−1,v
∗ ⊗ u) = 0 and (βHFk )(1|1|0)(kσk−1,v

∗ ⊗ u) = k1k.

Lemma 4.4. The only nontrivial terms of βHFk are:

(βHFk )(1|1|0) :



(iρk, u∗ ⊗ u) 7→ iρk (i ≥ k + 1)

(kσk−1, v∗ ⊗ u) 7→ k1k

(iρk−1, v∗ ⊗ u) 7→ iρk (i ≥ k + 1)
(iσk−1, v∗ ⊗ u) 7→ iσk (i ≥ k + 1)

(iρk−1, v∗ ⊗ v) 7→ iρk−1 (i ≥ k)

and (βHFk )(0|1|1) :



(u∗ ⊗ u, kρj) 7→ kρj (j ≤ k − 1)

(v∗ ⊗ u, kσk−1) 7→ k−11k−1

(v∗ ⊗ u, kρj) 7→ k−1ρj (j ≤ k − 2)
(v∗ ⊗ u, kσj) 7→ k−1σj (j ≤ k − 2)

(v∗ ⊗ v, k−1ρj) 7→ k−1ρj (j ≤ k − 2)
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Proof. By definition, (βHFk )(1|1|0) counts rigid holomorphic 4-gons in Σ whose successive
edges, in counterclockwise order, lie on suitably perturbed copies of the following La-
grangians: QΣ

i ; either QΣ
k (for u∗) or QΣ

k−1 (for v∗); PΣ
k ; and either QΣ

k (for u) or QΣ
k−1

(for v). The count depends on the perturbations, so we have to be more specific.
Since we are working in the Fukaya category F(πΣ), the various arcs must be perturbed

by Hamiltonian isotopies which ensure that their end points are suitably ordered along
∂Σ; these perturbations are responsible for the intersection points corresponding to the
generators iρk and iσk (resp. iρk−1, iσk−1), which we take to lie close to the boundary
of Σ. By contrast, the intersection points corresponding to the generators u∗,u and k1k

normally all lie at the k-th branch point of πΣ, and perturbations are needed to avoid triple
intersections. As mentioned above, we achieve this by choosing a Hamiltonian which pushes
PΣ
k slightly towards the “ρ” side of the surface. Likewise for v∗,v and k−11k−1.

With this understood, the calculation simply becomes a matter of drawing the relevant
diagrams and looking for immersed four-gons with locally convex corners. The first two
cases are shown on Figures 10 and 11; the others are similar. �

As a consistency check, it is not hard to verify that the map βHFk is indeed an A∞-
homomorphism, namely for all a1, a2 ∈ BHF and m ∈ PHFk ⊗ kP

HF we have the identities

βHFk (1|1|0)(a1a2,m) + βHFk (1|1|0)(a1, a2m) + a1β
HF
k (1|1|0)(a2,m) = 0,

βHFk (0|1|1)(m, a1a2) + βHFk (0|1|1)(ma1, a2) + βHFk (0|1|1)(m, a1)a2 = 0,

a1β
HF
k (0|1|1)(m, a2) + βHFk (0|1|1)(a1m, a2) + βHFk (1|1|0)(a1,m)a2 + βHFk (1|1|0)(a1,ma2) = 0.

5. A spectral sequence from the Khovanov-Seidel to the bordered Floer
algebra

In Sections 3 and 4 we showed how to use the data of a basis, Q̃, to construct

• a graded algebra, BKh, using a construction of Khovanov-Seidel in [21] and
• a (graded) algebra BHF , using ideas of Lipshitz-Ozsváth-Thurston in [27] as gener-

alized by Zarev in [42] and reinterpreted by the first author in [3].

In this section, we establish the existence of a spectral sequence connecting BKh and
BHF . Explicitly, we prove:

Theorem 5.1. Let

BKh := H∗

 m⊕
i,j=0

HomA(Qi, Qj)


be the homology of the Hom algebra associated to the basis Q̃ and let BHF := A (ZQ, 1) be
the 1–moving strands algebra associated to the arc diagram, ZQ. There exists a filtration
on BHF whose associated graded algebra is isomorphic, as an ungraded algebra, to BKh.
Accordingly, one obtains a spectral sequence whose E1 page is isomorphic to BKh and whose
E∞ page is isomorphic to BHF .

Remark 5.2. The observant reader will at this point notice that the spectral sequence
described in the statement of Theorem 5.1 must be somewhat unusual, since BHF is not a
dg algebra but an algebra; hence, the induced differential on the associated graded page is
necessarily trivial and the associated spectral sequence on F–vector spaces collapses imme-
diately. This should perhaps not be surprising, as we have dim

(
iB

Kh
j

)
= dim

(
iB

HF
j

)
for

each i, j ∈ {0, . . . ,m}. On the other hand, BKh and BHF are not isomorphic as algebras.
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τ a b

B

A

Figure 12. A Z/2Z–equivariant chain complex for S1.

The filtration serves only to alter the multiplicative structure on the underlying algebra and
not to change the dimensions of the underlying F–vector spaces.

We pave the way for a proof of Theorem 5.1 by focusing first on a “toy model” given
by the following two lemmas. Though not logically necessary for the proof of Theorem 5.1,
we include them in order to motivate the definition of the filtration yielding the spectral
sequence from BKh and BHF .

Lemma 5.3. There exists a filtered differential algebra, C, whose associated graded homol-
ogy algebra is isomorphic to H∗(S1) and whose total homology algebra is isomorphic to
H∗(S0). Furthermore, the associated graded complex and the total complex of C are formal
A∞ algebras.

Proof. We construct C using a Z/2Z–equivariant cochain complex for H∗(S1). Specifically,
identify S1 with the unit circle in C and give it the structure of a simplicial complex by
placing two 0–simplices labeled a and b at −1 and 1, respectively, and two 1–simplices
labeled A and B along the arcs

{
eiθ|θ ∈ [π, 0]

}
and

{
eiθ|θ ∈ [−π, 0]

}
, respectively, as in

Figure 12. Let a∗ (resp. b∗, A∗, B∗) represent the Z/2Z cochain that assigns 1 to a (resp.,
b, A, B) and 0 to all other simplices in the basis.

The filtered differential algebra, C, is generated by a∗, b∗, A∗, and B∗ with multiplication
given by the cup product on cochains (cf. [15]):

(2)

∪ a∗ b∗ A∗ B∗

a∗ a∗ 0 A∗ B∗

b∗ 0 b∗ 0 0
A∗ 0 A∗ 0 0
B∗ 0 B∗ 0 0

There are two commuting differentials, δ and ∂τ , on C, giving C the structure of a differ-
ential algebra:

• δ is the standard coboundary map on the simplicial cochain complex (hence satisfies
the Leibniz rule with respect to the cup product multiplication), and

• ∂τ = 1 + τ , where τ is the involution on the cochain complex induced by complex
conjugation on C. One easily checks that ∂τ satisfies the Leibniz rule with respect
to the cup product multiplication.

We have the following two-step filtration F−1 ⊆ F0 ⊆ F1:

0 ⊆ ker(∂τ ) ⊆ C
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on (C, δ + ∂τ ). This gives C the structure of a filtered algebra, since Fi · Fj ⊆ Fi+j for all
i, j.5 Furthermore, the associated graded complex is (C, δ), with homology H∗(S1) and the
homology of the total complex (C, δ+ ∂τ ) is the cohomology of the fixed point set of τ , i.e.,
H∗(S0).

We now use Proposition 2.5 to compute the A∞ structure on the associated graded
complex of C, defining maps ι : H∗(S1)→ (C, δ), p : (C, δ)→ H∗(S1) and h : (C, δ)→ (C, δ)
satisfying the conditions in Equation 1.

Let 1 denote the generator of H0(S1) and x denote the generator of H1(S1). Then we
define

ι(1) := a∗ + b∗

ι(x) := A∗,

p(a∗) := 1

p(A∗) = p(B∗) := x

p(b∗) := 0,

and

h(B∗) := b∗

h(a∗) = h(b∗) = h(A∗) := 0

An application of Lemma 2.24 then implies that the associated graded algebra is formal.
We proceed similarly for (C, δ + ∂τ ). Let ρ, σ denote the two generators of H∗(S0)

corresponding to the two connected components of S0. We define:

ι(ρ) := a∗ + A∗

ι(σ) := b∗ + A∗,

p(a∗) := ρ

p(b∗) := σ,

p(A∗) = p(B∗) := 0

and

h(B∗) := A∗

h(a∗) = h(b∗) = h(A∗) := 0,

Once again, an application of Lemma 2.24 implies that the total algebra of C is formal. �

As noted in the proof of Lemma 5.3, we have simple descriptions of H∗(S1) and H∗(S0)
as F–algebras:

H∗(S1) ∼= F[x]/x2

and

H∗(S0) := SpanF〈ρ, σ〉,

5The only non-trivial check that must be performed is that F0 · F0 ⊆ F0, but this follows from the fact
that ∂τ satisfies the Leibniz rule.
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with multiplication given by

m2(ρ⊗ ρ) = ρ

m2(σ ⊗ σ) = σ

m2(ρ⊗ σ) = m2(σ ⊗ ρ) = 0.

Furthermore, the filtration on the filtered differential algebra C defined in the proof of
Lemma 5.3 induces a filtration on H∗(S0). Accordingly, we have:

Lemma 5.4. Consider the following filtration, F−1 ⊆ F0 ⊆ F1, on H∗(S0):

0 ⊆ SpanF〈ρ+ σ〉 ⊆ H∗(S0).

With respect to this filtration, H∗(S0) is a well-defined filtered (differential) algebra with
associated graded algebra isomorphic to H∗(S1).

Proof. The claim follows immediately from the observation that the A∞ quasi-isomorphism
ι : H∗(S0) → C guaranteed by Lemma 2.24 is filtered, hence induces a filtered A∞ quasi-
isomorphism.

However, we find it instructive to give a more direct proof.
First, H∗(S0) is easily seen to be a well-defined filtered (A∞) algebra (Definition 2.15)

with respect to the above choice of filtration. The only non-trivial check that must be
performed is that m2((ρ+ σ)⊗ (ρ+ σ)) ⊆ F0, which follows since 1 := ρ+ σ is the identity
element of H∗(S0). Recalling that the multiplication on the associated graded is given by

m2 : Fr/Fr−1 ⊗Fs/Fs−1 → Fr+s/Fr+s−1,

we see immediately that 1 is also the multiplicative identity in gr(H∗(S0)), since it lies in
filtration level 0.

The underlying F–vector space of the associated graded algebra gr(H∗(S0)) can be de-
scribed by:

Fn/Fn−1 :=

 SpanF〈1〉 if n = 0,
SpanF〈ρ〉 if n = 1,

0 otherwise.

Furthermore,
m2(ρ⊗ ρ) = ρ = 0 ∈ F2/F1.

Hence, gr(H∗(S0)) is isomorphic to H∗(S1), by identifying 1, ρ ∈ gr(H∗(S0)) with 1,x ∈
H∗(S1). �

We now proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. Recalling (see Remark 4.1) that BHF is isomorphic to the algebra
of lower triangular (m + 1) × (m + 1) matrices over H∗(S0) with only 0’s and 1’s on the
diagonal, we define the desired filtration, F−1 ⊆ F0 ⊆ F1, on BHF as follows:

0 ⊆
{
M ∈ BHF φi,j ∈ {0, 1} ∀ i > j

}
⊆ BHF

We now claim that the associated graded algebra, gr
(
BHF

)
, is isomorphic to BKh. To

see this, note that

Fn/Fn−1 :=

 {M ∈ BHF φi,j ∈ {0, 1} ∀ i > j} when n = 0,
{M ∈ BHF φi,j ∈ {0, ρ} ∀ i > j, and dk = 0 ∀ k} when n = 1, and

0 otherwise.

In particular, gr(BHF ) is isomorphic to the algebra of (m+ 1)× (m+ 1) lower triangular
matrices over gr(H∗(S0)) with only 0’s and 1’s on the diagonal, where the filtration on
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H∗(S0) is the one described in Lemma 5.4. Hence, Lemma 5.4 tells us that gr(BHF ) is
isomorphic to BKh as an F–algebra, as desired. �

6. A spectral sequence from the Khovanov-Seidel to the bordered Floer
bimodules

In analogy to Theorem 5.1, we prove the following theorem relating the Hom modules
described in Section 3 to the bordered Floer modules described in Section 4.

Recall that Q̃ is the basis (of ∂–admissible bigraded curves in normal form) pictured in
Figure 5.

Theorem 6.1. Let σ ∈ Bm+1 be a braid, MKh
σ the bimodule associated to the pair (Q̃, σ)

in Section 3, and MHF
σ the bordered Floer bimodule associated to the pair (Q, σ) in Section

4. There exists a filtration on MHF
σ whose associated graded bimodule is isomorphic (as an

ungraded A∞ bimodule over BKh) to MKh
σ . Accordingly, one obtains a spectral sequence

whose E1 page is isomorphic to MKh
σ and whose E∞ page is isomorphic to MHF

σ .

Note that Theorem 5.1 is Theorem 6.1 in the special case σ = Id. The proof of Theorem
6.1 proceeds in two steps. We begin by giving an explicit construction of the filtration in
the special case where σ is one of the elementary Artin braid generators, {σ±k |k = 1, . . . ,m}
(Proposition 6.2). Then in the general case, σ = σ±k1

· · ·σ±kn , we explain how to construct
a filtration and appropriate spectral sequence on the A∞ module formed as the A∞ tensor
product

MHF
σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

.

Proposition 6.2. Let σ±k ∈ Bm+1 be an elementary Artin braid generator, MKh
σ±k

the bi-

module associated to the pair (Q̃, σ±k ) in Section 3, and MHF
σ±k

the bordered-Floer bimodule

associated to the pair (Q, σ±k ) in Section 4. There exists a filtration on MHF
σ±k

whose asso-

ciated graded bimodule is isomorphic (as an ungraded A∞ bimodule over BKh) to MKh
σ±k

.

Accordingly, one obtains a spectral sequence whose E1 page is isomorphic toMKh
σ±k

and whose

E∞ page is isomorphic to MHF
σ±k

.

Proof of Proposition 6.2. Guided by the models MKh
σ±k

and MHF
σ±k

constructed in Sections

3 and 4, we turn now to constructing filtrations on the filtered bimodules MHF
σ±k

(over the

filtered algebra BHF ) with the desired properties.
We begin by defining, for each k ∈ {0, . . . ,m}, filtrations on PHFk and kP

HF . Since:

(1) we have already defined (Theorem 5.1) a filtration on BHF ,
(2) the tensor product of two filtered A∞ modules inherits the structure of a filtered

A∞ module,
(3) the mapping cone of two filtered A∞ modules inherits the structure of a filtered A∞

module, and
(4) we have

MHF
σ+
k

:= MC
(
βHFk : (PHFk ⊗ kP

HF )→ BHF
)

and

MHF
σ−k

:= MC
(
γHFk : BHF → (PHFk ⊗ kP

HF ){−1}
)
,
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this will induce a filtration on each MHF
σ±k

, as desired.

Recalling that PHFk := SpanF〈u∗,v∗〉 (resp., kP
HF := SpanF〈u,v〉), we define the fil-

tration, F−1 ⊆ F0 ⊆ F1, on PHFk to be 0 ⊆ Span〈v∗〉 ⊆ PHFk (resp., on kP
HF to be

0 ⊆ Span〈u〉 ⊆ kP
HF ).

Verification that βHFk and γHFk are filtered A∞ morphisms with respect this choice of
filtration is a straightforward check of a small number of cases, and is left to the reader.

We now must show that the associated graded (homology) of MHF
σ±k

is isomorphic to

MKh
σ±k

as a
(
gr(BHF ) = BKh

)
–bimodule.

Since we have already shown (in the proof of Theorem 5.1) that the multiplication on
gr(BHF ) matches the multiplication on BKh, all that remains to show is

(1) that the multiplication of gr(BHF ) on gr
(
PHFk ⊗ kP

HF
)

matches the multiplication

of BKh on PKhk ⊗ kP
Kh and

(2) that the maps induced by γHFk and βHFk on gr(BHF ) and gr
(
PHFk ⊗ kP

HF
)

match

the maps γKhk and βKhk .

Seeing that the multiplication of gr(BHF ) on gr
(
PHFk ⊗ kP

HF
)

matches the multiplica-

tion of BKh on PKhk ⊗ kP
Kh is a simple check of a small number of cases, bearing in mind

that under the isomorphism gr(BHF )↔ BKh, we have the identification iρj ↔ ixj .
The map induced by γHFk on gr(BHF ) is quickly seen to match the map γKhk , since γHFk

is a filtered morphism with no higher terms, and the descriptions of γKhk (Proposition 3.17)
and γHFk (Lemma 4.3) are identical.

Verifying that the map induced by βHFk on gr
(
PHFk ⊗ kP

HF
)

matches the map βKhk is a
bit more involved but, again, requires only a handful of checks. We perform a couple here,
leaving the rest to the reader.

Lemma 4.4 tells us that when i ≥ k + 1:(
βHFk

)
(1|1|0)

[iρk ⊗ (u∗ ⊗ u)] := iρk.

But viewed as elements of the associated graded, we have iρk ∈ F1/F0(BHF ) and u∗⊗u ∈
F1/F0

(
PHFk ⊗ kP

HF
)
, and thus the induced associated graded map is:(

βHFk
)

(1|1|0)
[iρk ⊗ (u∗ ⊗ u)] := iρk = 0 ∈ F2/F1(BHF ).

Under the identification
(
iρk ∈ gr

(
BHF

))
↔
(
ixk ∈ BKh

)
, this agrees with Proposition

3.18, which says: (
βKhk

)
(1|1|0)

[ixk ⊗ (u∗ ⊗ u)] := 0.

Lemma 4.4 also tells us that when j ≤ k − 1:(
βHFk

)
(0|1|1)

[(v∗ ⊗ u)⊗ k(ρ+ σ)j ] := k−1(ρ+ σ)j .

Since (v∗ ⊗ u), k(ρ + σ)j , and k−1(ρ + σ)j are all in F0/F−1, the induced map on the
associated graded is still:(

βHFk
)

(0|1|1)
[(v∗ ⊗ u)⊗ k(ρ+ σ)j ] := k−1(ρ+ σ)j .

Under the identification
(
i1j := i(ρ+ σ)j ∈ gr(BHF )

)
↔ i1j ∈ BKh, this agrees with

Proposition 3.18 which says:(
βKhk

)
(0|1|1)

[(v∗ ⊗ u)⊗ k1j ] := k−11j .

�
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Proof of Theorem 6.1. Now that we have a filtration on the A∞ bimoduleMHF
σ±k

yielding a

spectral sequence from MKh
σ±k

to MHF
σ±k

for each elementary Artin generator, σ±k , we would

like to construct a filtered A∞ bimoduleMHF
σ and corresponding spectral sequenceMKh

σ →
MHF

σ for every σ ∈ Bm+1.
We begin with a decomposition σ = σ±k1

· · ·σ±kn and define

MHF
σ :=MHF

σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

,

which has the structure of a filtered A∞ bimodule, by Lemma 2.18.
We then check that the associated graded complex of MHF

σ is equivalent to MKh
σ in

D∞
(
BKh

)
, i.e.:

gr
(
MHF

σ

)
∼ MKh

σ

gr

(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼ MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

in D∞(BKh).
Lemma 2.21 tells us that

gr

(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼ gr

(
MHF

σ±k1

)
⊗̃gr(BHF ) . . . ⊗̃gr(BHF ) gr

(
MHF

σ±kn

)
as bimodules over gr(BHF ). Therefore, they are equivalent in D∞

(
BKh

)
, since gr(BHF )

is isomorphic to BKh (Theorem 5.1). Furthermore, we also know (Proposition 6.2) that

gr

(
MHF

σ±ki

)
∼MKh

σ±ki

in D∞(BKh), so we have

gr
(
MHF

σ

)
= gr

(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

=MKh
σ ,

as desired.
�
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[27] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston. Bordered Heegaard Floer homology: Invariance
and pairing. math.GT/0810.0687, 2008.
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