15 research outputs found

    Overexpression of the X-Linked Inhibitor of Apoptosis Protein (XIAP) in Neurons Improves Cell Survival and the Functional Outcome after Traumatic Spinal Cord Injury

    Get PDF
    Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity. Accordingly, we have shown that the elevation of XIAP resulted in increased neuronal survival after SCI and improved functional recovery. Therefore, we hypothesise that neuronal overexpression of XIAP can be neuroprotective after SCI with improved functional recovery. In line with this, studies of a transgenic mice with overexpression of XIAP in neurons revealed that higher levels of XIAP after spinal cord trauma favours neuronal survival, tissue preservation, and motor recovery after the spinal cord trauma. Using human SH-SY5Y cells overexpressing XIAP, we further showed that XIAP reduced caspase activity and apoptotic cell death after pro-apoptotic stimuli. In conclusion, this study shows that the levels of XIAP expression are an important factor for the outcome of spinal cord trauma and identifies XIAP as an important therapeutic target for alleviating the deleterious effects of SCI

    Evaluation of Poly(N-Ethyl Pyrrolidine Methacrylamide) (EPA) and Derivatives as Polymeric Vehicles for miRNA Delivery to Neural Cells

    Get PDF
    MicroRNAs (miRNAs) are endogenous, short RNA oligonucleotides that regulate the expression of hundreds of proteins to control cells' function in physiological and pathological conditions. miRNA therapeutics are highly specific, reducing the toxicity associated with off-target effects, and require low doses to achieve therapeutic effects. Despite their potential, applying miRNA-based therapies is limited by difficulties in delivery due to their poor stability, fast clearance, poor efficiency, and off-target effects. To overcome these challenges, polymeric vehicles have attracted a lot of attention due to their ease of production with low costs, large payload, safety profiles, and minimal induction of the immune response. Poly(N-ethyl pyrrolidine methacrylamide) (EPA) copolymers have shown optimal DNA transfection efficiencies in fibroblasts. The present study aims to evaluate the potential of EPA polymers as miRNA carriers for neural cell lines and primary neuron cultures when they are copolymerized with different compounds. To achieve this aim, we synthesized and characterized different copolymers and evaluated their miRNA condensation ability, size, charge, cytotoxicity, cell binding and internalization ability, and endosomal escape capacity. Finally, we evaluated their miRNA transfection capability and efficacy in Neuro-2a cells and rat primary hippocampal neurons. The results indicate that EPA and its copolymers, incorporating β-cyclodextrins with or without polyethylene glycol acrylate derivatives, can be promising vehicles for miRNA administration to neural cells when all experiments on Neuro-2a cells and primary hippocampal neurons are considered together.This research was supported by the Council of Education, Culture and Sports of the Regional Government of Castilla La Mancha (Spain) and Co-financed by the European Union (FEDER) “A way to make Europe” (project references SBPLY/17/000376 and SBPLY/21/180501/000097) and by the Ministerio de Ciencia, Innovación y Universidades (RTI2018-096328-B-I00). Altea Soto was funded by the Council of Education, Culture and Sports of the Regional Government of Castilla La Mancha (Spain) M. Asunción Barreda-Manso is funded by the Council of Health of the Regional Government of Castilla La Mancha (Spain), through: “Convocatoria de Ayudas Regionales a la Investigación en Biomedicina y Ciencias de la Salud” (II-2020_05). Irene Novillo Algaba is funded by the Next Generation Funds of the European Union through the “Programa Investigo”.Peer reviewe

    Integrated Stress Response as a Therapeutic Target for CNS Injuries

    No full text
    © 2017 Lorenzo Romero-Ramírez et al.Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury

    Integrated Stress Response as a Therapeutic Target for CNS Injuries

    No full text
    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury

    In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3′-UTR

    No full text
    COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5′ and 3′-UTR flanking a region of protein-coding ORFs closely resembling cells’ mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense. In the present study, we carried out a bioinformatics screening to search for endogenous human microRNAs targeting the 3′-UTR of SARS-CoV-2. Results from the computational techniques allowed us to identify 10 potential candidates. The capacity of 3 of them, together with hsa-miR-138-5p, to target the SARS-CoV-2 3′-UTR was validated in vitro by gene reporter assays. Available information indicates that two of these microRNAs, namely, hsa-miR-3941 and hsa-miR-138-5p, combine effective targeting of SARS-CoV-2 genome with complementary antiviral or protective effects in the host cells that make them potential candidates for therapeutic treatment of most, if not all, COVID-19 variants known to date. All information obtained while conducting the present analysis is available at Open Science Framework repository

    MiR-138-5p Upregulation during Neuronal Maturation Parallels with an Increase in Neuronal Survival

    No full text
    Neuronal maturation is a process that plays a key role in the development and regeneration of the central nervous system. Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal neuronal maturation are less understood. Among the mechanisms influencing such neuronal maturation processes, apoptosis plays a key role. Several regulators have been described to modulate apoptosis, including post-transcriptional regulation by microRNAs. This study aimed to analyze endogenous expression changes of miR-138-5p, as well as its main validated pro-apoptotic target caspase3, during the maturation of neuronal cultures and their response under apoptotic challenge. Our results point out that the observed opposite expression of miR-138-5p and its target caspase3 might modulate apoptosis favoring neuronal survival at distinct maturation stages. The unchanged expression of miR-138-5p in mature neurons contrasts with the significant downregulation in immature neurons upon apoptotic stimulation. Similarly, immunoblot and individual cellular assays confirmed that during maturation, not only the expression but processing of CASP-3 and caspase activity is reduced after apoptotic stimulation which results in a reduction of neuronal death. Further studies would be needed to determine a more detailed role of miR-138-5p in apoptosis during neuronal maturation and the synergistic action of several microRNAs acting cooperatively on caspase3 or other apoptotic targets

    miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro

    No full text
    Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity. Our results show that miR-182-5p mimic specifically downregulates the expression of the luciferase reporter gene fused to the mouse Nogo-A 3′UTR, and Nogo-A protein expression in Neuro-2a and C6 cells. Finally, we observed that when rat primary hippocampal neurons are co-cultured with C6 cells transfected with miR-182-5p mimic, there is a promotion of the outgrowth of neuronal neurites in length. From all these data, we suggest that miR-182-5p may be a potential therapeutic tool for the promotion of axonal regeneration in different diseases of the CNS

    New oleyl glycoside as anti-cancer agent that targets on neutral sphingomyelinase

    No full text
    We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the α-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells. Analysis of sphingolipids and glycosphingolipds in cells treated with the glycosides showed that the α-anomer caused a drastic accumulation of ceramide and glucosylceramide and reduction of lactosylceramide and GM3 ganglioside at concentrations above a threshold of 20 μM. In order to understand how ceramide levels increase in response to α-glycoside treatment, further investigations were done using specific inhibitors of sphingolipid metabolic pathways. The pretreatment with 3-O-methylsphingomyelin (a neutral sphingomyelinase inhibitor) restored sphingomyelin levels together with the lactosylceramide and GM3 ganglioside levels and prevented the ER stress and cell death caused by the α-glycoside. The results indicated that the activation of neutral sphingomyelinase is the main cause of the alterations in sphingolipids that eventually lead to cell death. The new oleyl glycoside targets a key enzyme in sphingolipid metabolism with potential applications in cancer therapy.We appreciate the help of Noelia Villarrubia Migallón (Flow cytometry and cell sorting unit, Instituto Cajal, CSIC) with flow cytometry determinations in cell death/apoptosis experiments. We acknowledge Dr. Ron Prywes, Columbia University for providing UPRE-pGL3 (previously called 5xATF6-pGL3) reporter plasmid. We greatly appreciate the financial support provided by the FISCAM-Servicio de Salud of Castilla-La Mancha (SESCAM) (PI2008/19 and PI2009/51), the Ministry of Economy and Competitiveness (PI11/00592, PI11/01436, SAF2009-11257 and SAF2012-40126), the Comunidad de Madrid (S2009/PPQ-1752), the CSIC (201280E091) and the Generalitat of Catalunya (Grant 2009SGR-1072) was greatly appreciated.Peer Reviewe

    Overexpression of the X-Linked Inhibitor of Apoptosis Protein (XIAP) in Neurons Improves Cell Survival and the Functional Outcome after Traumatic Spinal Cord Injury

    No full text
    Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity. Accordingly, we have shown that the elevation of XIAP resulted in increased neuronal survival after SCI and improved functional recovery. Therefore, we hypothesise that neuronal overexpression of XIAP can be neuroprotective after SCI with improved functional recovery. In line with this, studies of a transgenic mice with overexpression of XIAP in neurons revealed that higher levels of XIAP after spinal cord trauma favours neuronal survival, tissue preservation, and motor recovery after the spinal cord trauma. Using human SH-SY5Y cells overexpressing XIAP, we further showed that XIAP reduced caspase activity and apoptotic cell death after pro-apoptotic stimuli. In conclusion, this study shows that the levels of XIAP expression are an important factor for the outcome of spinal cord trauma and identifies XIAP as an important therapeutic target for alleviating the deleterious effects of SCI
    corecore