8 research outputs found

    Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes.

    Get PDF
    Resveratrol, a plant phenolic compound, is found in grapes and red wine, but is not widely distributed in other common food sources. The pathway for resveratrol biosynthesis is well characterized. Metabolic engineering of this compound has been achieved in tomato plants (Lycopersicon esculentum Mill.) in order to improve their nutritional value. Tomato plants synthesizing resveratrol were obtained via the heterologous expression of a grape (Vitis vinifera L.) cDNA encoding for the enzyme stilbene synthase (StSy), under the control of the fruit-specific promoter TomLoxB. The resulting LoxS transgenic plants accumulated trans-resveratrol and trans-piceid, in particular in the skin of the mature fruits. Quantitative analyses carried out on LoxS fruits were compared with those of a tomato line constitutively expressing the stsy gene (35SS). The LoxS fruits contained levels of trans-resveratrol that were 20-fold lower than those previously reported for the 35SS line. The total antioxidant capability and ascorbate content in transformed fruits were also evaluated, and a significant increase in both was found in the LoxS and 35SS lines. These results could explain the higher capability of transgenic fruits to counteract the pro-inflammatory effects of phorbol ester in monocyte-macrophages via the inhibition of induced cyclo-oxygenase-2 enzyme

    Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables

    No full text
    Anthocyanins, the naturally occurring pigments responsible for most red to blue colours of flowers, fruits and vegetables, have also attracted interest because of their potential health effects. With the aim of contributing to major insights into their structure–activity relationship (SAR), we have evaluated the radical scavenging and biological activities of selected purified anthocyanin samples (PASs) from various anthocyanin-rich plant materials: two fruits (mahaleb cherry and blackcurrant) and two vegetables (black carrot and “Sun Black” tomato), differing in anthocyanin content (ranging from 4.9 to 38.5 mg/g DW) and molecular structure of the predominant anthocyanins. PASs from the abovementioned plant materials have been evaluated for their antioxidant capacity using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In human endothelial cells, we analysed the anti-inflammatory activity of different PASs by measuring their effects on the expression of endothelial adhesion molecules VCAM-1 and ICAM-1. We demonstrated that all the different PASs showed biological activity. They exhibited antioxidant capacity of different magnitude, higher for samples containing non-acylated anthocyanins (typical for fruits) compared to samples containing more complex anthocyanins acylated with cinnamic acid derivatives (typical for vegetables), even though this order was slightly reversed when ORAC assay values were expressed on a molar basis. Concordantly, PASs containing non-acylated anthocyanins reduced the expression of endothelial inflammatory antigens more than samples with aromatic acylated anthocyanins, suggesting the potential beneficial effect of structurally diverse anthocyanins in cardiovascular protection

    Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review

    No full text
    Early atherosclerosis features functional and structural changes in the endothelial barrier function that affect the traffic of molecules and solutes between the vessel lumen and the vascular wall. Such changes are mechanistically related to the development of atherosclerosis. Proatherogenic stimuli and cardiovascular risk factors, such as dyslipidaemias, diabetes, obesity, and smoking, all increase endothelial permeability sharing a common signalling denominator: an imbalance in the production/disposal of reactive oxygen species (ROS), broadly termed oxidative stress. Mostly as a consequence of the activation of enzymatic systems leading to ROS overproduction, proatherogenic factors lead to a pro-inflammatory status that translates in changes in gene expression and functional rearrangements, including changes in the transendothelial transport of molecules, leading to the deposition of low-density lipoproteins (LDL) and the subsequent infiltration of circulating leucocytes in the intima. In this review, we focus on such early changes in atherogenesis and on the concept that proatherogenic stimuli and risk factors for cardiovascular disease, by altering the endothelial barrier properties, co-ordinately trigger the accumulation of LDL in the intima and ultimately plaque formation
    corecore