32 research outputs found

    Advanced ultra-light multifunctional metallic-glass wave springs

    Get PDF
    We show that, using thermo -elastic processing, metallic -glass foils can be shaped, without being embrittled, into linear and annular wave springs. These springs exhibit an undulatory behaviour, unique to metallic -glass foils, in which under compression the number of arcs in the spring increases, increasing the load -bearing capacity and the spring constant. We evaluate the performance limits of the metallic -glass wave springs, and consider how the undulatory behaviour can be exploited. The metallic -glass springs can operate over the same load -ranges as commercially available crystalline wave springs, but have material volumes (and therefore weights) that are one to two orders of magnitude less. Their energy storage per unit material volume is as high as 2600 kJ m – 3 . We suggest that the undulatory behaviour is important in rendering the springs fail -safe in case of overload. We discuss the range of applicability of thermo -elastic processing, the likely working limit of metallic -glass wave springs, and the potential for application of metallic -glass springs in MEMS devices

    Advanced ultra-light multifunctional metallic-glass wave springs

    Get PDF
    We show that, using thermo-elastic processing, metallic-glass foils can be shaped, without being embrittled, into linear and annular wave springs. These springs exhibit an undulatory behaviour, unique to metallic-glass foils, in which under compression the number of arcs in the spring increases, increasing the load-bearing capacity and the spring constant. We evaluate the performance limits of the metallic-glass wave springs, and consider how the undulatory behaviour can be exploited. The metallic-glass springs can operate over the same load-ranges as commercially available crystalline wave springs, but have material volumes (and therefore weights) that are one to two orders of magnitude less. Their energy storage per unit material volume is as high as 2600 kJ m−3. We suggest that the undulatory behaviour is important in rendering the springs fail-safe in case of overload. We discuss the range of applicability of thermo-elastic processing, the likely working limit of metallic-glass wave springs, and the potential for application of metallic-glass springs in MEMS devices

    Propriété Mécaniques des Verres Métalliques ; Mise en Forme et Applications

    No full text
    This thesis features the two modes of deformation of metallic glasses produced under different forms (bulk, ribbons and particles). Inhomogeneous deformation in bulk samples is studied by scanning electron microscopy. Heat generated by elastic energy release during deformation is responsible for the melting observed in shear bands, and calculations using an analytical model of the temperature profile around a band are consistent with morphological observations and reports of appearance of nano-crystals in or next to deformed areas. Shaping by annealing glassy ribbons was carried out. The study presents successful shaping without embrittlement of ribbons of different metal-metal and metal-metalloid compositions of glassy systems. A heat treatment process is suggested for redistribution of applied stresses before the intervention of thermal embrittlement. A joint patent for exploiting the findings has been filed with a major producer of mechanical watches. Development of new strong and light composite materials by dispersing glassy particles in aluminum and magnesium based matrices is presented and significant improvement in mechanical properties is obtained.Ce travail de thèse considère les modes de déformations des verres métalliques produits sous différentes formes (verres massifs, rubans et particules). La déformation hétérogène dans des échantillons massifs de verres métalliques à base de zirconium est étudiée par microscopie électronique à balayage. Le dégagement rapide de l'énergie élastique stockée sous forme de chaleur lors de la déformation est responsable de la fusion locale observée dans les bandes de cisaillement. Le calcul du profil de température autour d'une bande par un modèle analytique est cohérent avec les observations morphologiques et les rapports d'apparition de nano-cristaux dans la zone déformée. La mise en forme par recuit des rubans de verres métalliques a été étudiée. L'étude aboutit à la mise en forme sans fragilisation des rubans appartenant à différentes compositions de systèmes d'alliages dit métal-métal et métal-métalloïde. Un processus de traitement thermique est suggéré pour assurer la redistribution des contraintes imposées avant l'intervention de la fragilité thermique. Un brevet industriel basé sur ces résultats a été conjointement déposé avec un grand fabriquant de montres mécaniques. De nouveaux matériaux composites d'alliages légers commerciaux à base de Mg et d'Al renforcés par des dispersions de particules de verres métalliques ont été réalisés sans porosité. Une amélioration très nette des propriétés mécaniques est obtenue

    Propriété Mécaniques des Verres Métalliques ; Mise en Forme et Applications

    No full text
    This thesis features the two modes of deformation of metallic glasses produced under different forms (bulk, ribbons and particles). Inhomogeneous deformation in bulk samples is studied by scanning electron microscopy. Heat generated by elastic energy release during deformation is responsible for the melting observed in shear bands, and calculations using an analytical model of the temperature profile around a band are consistent with morphological observations and reports of appearance of nano-crystals in or next to deformed areas. Shaping by annealing glassy ribbons was carried out. The study presents successful shaping without embrittlement of ribbons of different metal-metal and metal-metalloid compositions of glassy systems. A heat treatment process is suggested for redistribution of applied stresses before the intervention of thermal embrittlement. A joint patent for exploiting the findings has been filed with a major producer of mechanical watches. Development of new strong and light composite materials by dispersing glassy particles in aluminum and magnesium based matrices is presented and significant improvement in mechanical properties is obtained.Ce travail de thèse considère les modes de déformations des verres métalliques produits sous différentes formes (verres massifs, rubans et particules). La déformation hétérogène dans des échantillons massifs de verres métalliques à base de zirconium est étudiée par microscopie électronique à balayage. Le dégagement rapide de l'énergie élastique stockée sous forme de chaleur lors de la déformation est responsable de la fusion locale observée dans les bandes de cisaillement. Le calcul du profil de température autour d'une bande par un modèle analytique est cohérent avec les observations morphologiques et les rapports d'apparition de nano-cristaux dans la zone déformée. La mise en forme par recuit des rubans de verres métalliques a été étudiée. L'étude aboutit à la mise en forme sans fragilisation des rubans appartenant à différentes compositions de systèmes d'alliages dit métal-métal et métal-métalloïde. Un processus de traitement thermique est suggéré pour assurer la redistribution des contraintes imposées avant l'intervention de la fragilité thermique. Un brevet industriel basé sur ces résultats a été conjointement déposé avec un grand fabriquant de montres mécaniques. De nouveaux matériaux composites d'alliages légers commerciaux à base de Mg et d'Al renforcés par des dispersions de particules de verres métalliques ont été réalisés sans porosité. Une amélioration très nette des propriétés mécaniques est obtenue

    Shaping of metallic glasses by stress-annealing without thermal embrittlement.

    No full text
    International audienceThermomechanical shaping of metallic glasses has previously been reported to result in severe thermal embrittlement. This phenomenon is most likely the reason why little effort has been made to exploit the mechanical properties of complex shapes attainable by thermomechanical shaping of metallic glass tapes and ribbons. The present study revealed time temperature windows in which metallic glasses can be shaped by thermal annealing while remaining fully ductile. These include binary (Fe(83)B(17), Co(80)B(20) and Pd(82)Si(18)), ternary (Fe(81.5)B(14.5)Si(4) and Cu(60)Zr(30)Al(10)) and more complex quaternary Zr(70)Ni(16)Cu(6)Al(8) glassy alloys of both metal metalloid and metal metal types. All showed full bending ductility after shaping. The thermomechanical processing leading to full shaping without thermal embrittlement was successfully modeled using the approach of A.I. Taub (Ada Metallurgica 1981) based on the free-volume model of structural relaxation. The results are of direct interest for applications of metallic glasses as springs. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Myxom der Columella

    No full text

    Cu-based metallic glass particle additions to significantly improve overall compressive properties of an Al alloy

    No full text
    International audienceWe report the development of a novel light-weight Al (520) alloy-based composite reinforced with particles of a Cu-based (Cu54Zr36Ti10) metallic glass by mechanical milling followed by induction heated sintering. The consolidation of the composite is performed at a temperature in the super-cooled liquid region of the metallic glass just above its glass-transition temperature (T-g). Metallic glasses are a promising alternative reinforcement material for metal-matrix composites capable of producing significant strengthening along with a friendly sintering behavior. The mechanical milling procedures were properly established to allow reduction of the size of the metallic glass particles and their uniform distribution in the matrix. Microstructural observation of the composite did not reveal any porosity. The interface between the glassy particles and the matrix remained free of such defects. The fully dense consolidated composite showed a drastic gain in specific yield strength under compression relative to the matrix alloy and appreciable plasticity at fracture

    On the atomic structure of Zr-Ni and Zr-Ni-Al metallic glasses

    No full text
    International audienceUsing real space pair distribution functions derived from high precision x-ray diffraction data, the local atomic structure of Zr-Ni and Zr-Ni-Al metallic glasses was investigated. Unlike Zr-Cu metallic glasses, the structure of Zr-Ni metallic glasses cannot be approached with an ideal solution model, due to strong attractive interactions between Zr- and Ni atoms, which promote chemical short range order. Addition of Al can be beneficial for the glass forming ability of Zr-Ni metallic glasses. The atomic size of Al, being intermediate to those of Zr- and Ni and the strongly attractive interactions between Zr-Al and Zr-Ni atoms can lead to highly negative volumes of mixing Delta V/(mix), and to denser atomic structures, reduced atomic mobility in the liquid and easier suppression of crystallization in the undercooled liquid stat

    On the atomic structure of Zr-Ni and Zr-Ni-Al metallic glasses

    No full text
    International audienceUsing real space pair distribution functions derived from high precision x-ray diffraction data, the local atomic structure of Zr-Ni and Zr-Ni-Al metallic glasses was investigated. Unlike Zr-Cu metallic glasses, the structure of Zr-Ni metallic glasses cannot be approached with an ideal solution model, due to strong attractive interactions between Zr and Ni atoms, which promote chemical short range order. Addition of Al can be beneficial for the glass forming ability of Zr Ni metallic glasses. The atomic size of Al, being intermediate to those of Zr and Ni and the strongly attractive interactions between Zi-Al and Zr Ni atoms can lead to highly negative volumes of mixing Delta V-mix, and to denser atomic structures, reduced atomic mobility in the liquid and easier suppression of crystallization in the undercooled liquid stat
    corecore