17 research outputs found

    Measurement of transpiration restriction under high vapor pressure deficit for sorghum mapping population parents

    Get PDF
    Limiting transpiration rate under high vapor pressure deficit (VPD) and/or progressive soil drying conditions are soil water conservation mechanisms that can play an important drought-adaptive role if water is limiting to support crops at its full potential. In this study, these two important physiological mechanisms were measured on parental pairs of existing Recombinant Inbred Lines (RILs) of sorghum mapping populations; both in experiments run in the glasshouse and growth chambers, and outdoors. In controlled environmental conditions, the RIL1, RIL2, RIL6 and RIL8 showed contrasting transpiration response to increasing VPD. The difference in the soil moisture fractions of transpirable soil water threshold where transpiration initiated a decline were high in RIL1, RIL3 and RIL8 respectively. The exploration of the variation of the evapotranspiration response to VPD was also carried out in a high throughput phenotyping facility in which plants were grown similar to field density conditions. Under high VPD conditions, the RIL parental pairs showed usual transpiration peak during the midday period. At this time period, genotypic differences within parental pairs were observed in RIL1, RIL2, RIL6 and RIL8. The donor parent had lower transpiration than the recurrent parents during the midday/high VPD period. Also, we found variation among parental pairs in leaf area normalized with received radiation and measured plant architecture traits. Across studied genotypes, RIL1, RIL2 and RIL8 showed differences in the plant canopy architecture and the transpiration response to an increasing VPD. Collectively, these results open the opportunity to phenotype the RIL progenies of contrasting parents and genetically map the traits controlling plant water use. In turn, this can act as an important genetic resource for identification and incorporation of terminal drought tolerance components in marker-assisted breeding

    LeasyScan: 3D scanning of crop canopy plus seamless monitoring of water use to harness the genetics of key traits for drought adaptation

    Get PDF
    With the genomics revolution in full swing, relevant phenotyping is now a main bottleneck. New imaging technologies provide opportunities for easier, faster and more informative phenotyping of many plant parameters. However, it is critical that the development of automated phenotyping be driven by a clear framing of target phenotypes rather than by a technological push, especially for complex constraints. Previous studies on drought adaptation shows the importance of water availability during the grain filling period, which depends on traits controlling the plant water budget at earlier stages. We will then discuss “cause” and “consequence” in phenotypes. Drawing on this, a phenotyping platform (LeasyScan) was developed to target canopy development and conductance traits. Based on a novel 3D scanning technique to capture leaf area development continuously and a scanner-to-plant concept to increase imaging throughput, LeasyScan is also equipped with 1488 analytical scales to measure transpiration seamlessly. Examples of the first applications are presented: (i) to compare the leaf area development pattern of pearl millet breeding material targeted to different agro-ecological zones, (ii) for the mapping of QTLs for vigour traits in chickpea, shown to co-map with an earlier reported “drought tolerance” QTL; (iii) for the mapping of leaf area development in pearl millet; (iv) for assessing the transpiration response to high vapour pressure deficit in different crops. This new platform has the potential to phenotype traits controlling plant water use at a high rate and precision, opening the opportunity to harness their genetics towards breeding improved varieties

    OptiJ: Open-source optical projection tomography of large organ samples

    Get PDF
    The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples

    Grain legume production in Europe for food, feed and meat-substitution

    Get PDF
    Partial shifts from animal-based to plant-based proteins in human diets could reduce environmental pressure from food systems and serve human health. Grain legumes can play an important role here. They are one of the few agricultural commodities for which Europe is not nearly self-sufficient. Here, we assessed area expansion and yield increases needed for European self-sufficiency of faba bean, pea and soybean. We show that such production could use substantially less cropland (4–8%) and reduce GHG emissions (7–22% current meat production) when substituting for animal-derived food proteins. We discuss changes required in food and agricultural systems to make grain legumes competitive with cereals for farmers and how their cultivation can help to increase sustainability of European cropping systems.</p

    Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis) Influência de fatores ambientais na germinação e emergência das plântulas de trevo doce amarelo (Melilotus officinalis)

    No full text
    Laboratory and greenhouse experiments were conducted to determine the effects of drought and salinity stress, temperature, pH and planting depth on yellow sweet clover (Melilotus officinalis) germination and emergence. Base, optimum and ceiling germination temperatures were estimated as 0, 18.47 and 34.60 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited at a potential of -1 MPa, but it was tolerant to salinity. Salinity stress up to 90 mM had no effect over the M. officinalis seed germination, but the germination decreased by increasing the salt concentration. The drought and salinity required for 50% inhibition of maximum germination were 207 mM and -0.49 MPa, respectively. High percentage of seed germination (>92%) was observed at pH = 5-6 and decreased to 80% at acidic medium (pH 4) and to 42% at alkaline medium (pH 9) pH. Maximum seedling emergence occurred when the seeds were placed at 2 cm depth and decreased when increasing the depth of planting; no seed emerged from depths of 10 cm.<br>Experimentos de laboratório e de casa-de-vegetação foram conduzidos para determinar os efeitos dos estresses de seca, salinidade, temperatura, pH e a profundidade de plantio sobre a germinação e a emergência do trevo amarelo doce (Melilotus officinalis). Temperaturas base, ótima e teto para germinação de M. officinalis foram estimados em 0, 18 e 34 ºC, respectivamente. A germinação das sementes mostrou-se sensível ao estresse hídrico e foi totalmente inibida nos potenciais de -1 MPa. A germinação de M. officinalis foi tolerante à salinidade. Estresse salino até 90 mM não tiveram efeito sobre a germinação de sementes de M. officinalis, mas a germinação decresceu com o aumento da concentração de sal. A seca e a salinidade necessária para inibição de 50% de germinação máxima foi de 207 mm e -0,49 MPa, respectivamente. Alta porcentagem de germinação (>92%) foi observada em pH = 5-6 e desceu para 80% em condições ácidas (pH 4) e para 42% sob condições alcalinas (pH 9). Emergência máxima ocorreu quando as sementes foram posicionadas na profundidade de 2 cm e diminuiu com o aumento da profundidade de plantio. Nenhuma semente emergiu quando a profundidade de semeadura foi de 10 cm

    Two Cases of Miliary Tuberculosis and Increasing Level of CA-125

    No full text
    Two cases of miliary tuberculosis and elevated levels of cancer antigen 125 Ovarian carcinoma is one of the most dangerous malignancies in women. The serum level of cancer antigen (CA) 125, as a tumour marker, is useful in the diagnosis of ovarian cancer. CA 125 serum level is also elevated in ascites (1), ovarian tube abscess (2,3), biliary duct cancer and periampullary tumours (4), cholangitis (5), cancer of pancreas (6) and cervical adenocarcinoma (7). Additionally, sometimes the serum level of CA 125 increases spontaneously during the menstrual cycle (8,9). In bone marrow transplantation, this marker is a sensitive index in the diagnosis of veno-occlusive disease (10). We describe an elevated serum level of CA 125 in two cases of tuberculosis (TB): one with cryptogenic miliary TB, and the other with miliary TB and meningitis

    Future food self-sufficiency in Iran : a model-based analysis

    No full text
    Iran, with its more than 80 million people, is located in a politically unstable region. The country's future food supply and sufficiency is at stake because of the over-exploitation of land and water resources. In this study, a modeling framework was used to estimate production of plant species as influenced by different scenarios for the year 2030. The scenarios capture different agricultural water resources, improved irrigation efficiency and narrowing of crop yield gaps (i.e, difference between current farm yield and potential yield). Food demand, given a range of diets and loss and waste scenarios was also evaluated using the modeling framework. We found that limiting current agricultural water withdrawal to a safe level for the environment (from 86.0 to 38.5 billion m(3) per year) until 2030, along with an increase in population (from 80 to 90 million people) during the same period led to a decline in self-sufficiency from of 83% to only 39%, assuming current production management, current diet and food loss and waste. Implementation of a highly-improved production scenario (narrowing relative yield gap from the current 60% to 40% and increasing irrigation efficiency from the current 38% to 53%) restored self-sufficiency to 61% using the current diet, loss and waste and to 69% using a medium-change demand scenario (a modified diet and 15% reduction in loss and waste). Avoiding water over-withdrawal by agriculture until 2030 won't be possible without sacrificing a degree of self-sufficiency. To achieve the highest self-sufficiency results, a combination of increased production and controlled demand are necessary

    Modeling plant production at country level as affected by availability and productivity of land and water

    No full text
    Assessing the food availability and food security of countries is a critical exercise in which crop simulation models are essential. Application of crop models has been limited often to estimate yield per unit area of one or a few important field crops, whereas what is really required is the total national production of diverse crops including forages, vegetables and fruit trees that compete for limited resources of land and water. In this study a simple crop model (SSM-iCrop2; Simple Simulation Models) was set up for an entire country using a bottom-up approach such that it provides representative estimates of potential yield and other crop properties at provincial level as influenced by climate, soil, management and cultivar. The information is then used to calculate total plant production at province and country levels, as influenced by available land and water resources and by the efficiency of utilizing the resources using the concepts relative yield gap and irrigation efficiency. Iran was used as a case study to develop the modeling framework and illustrative outputs. Development of the framework resulted in accumulation of large bodies of valuable geospatial information and statistics across disciplines that are critical for analysis of plant production at a country level. The framework allows different scenarios of national plant production to be evaluated. This includes assessing the possibility of increasing national plant production via intensification, optimizing water allocation across plant species at province and country levels by changing the cropping pattern, and assessing and prioritizing possible ways of adapting a country's agriculture to limited land and water resources and climate change
    corecore