339 research outputs found

    Acoustic Supercoupling in a Zero-Compressibility Waveguide

    Full text link
    Funneling acoustic waves through largely mismatched channels is of fundamental importance to tailor and transmit sound for a variety of applications. In electromagnetics, zero-permittivity metamaterials have been used to enhance the coupling of energy in and out of ultranarrow channels, based on a phenomenon known as supercoupling. These metamaterial channels can support total transmission and complete phase uniformity, independent of the channel length, despite being geometrically mismatched to their input and output ports. In the field of acoustics, this phenomenon is challenging to achieve, since it requires zero-density metamaterials, typically realized with waveguides periodically loaded with membranes or resonators. Compared to electromagnetics, the additional challenge is due to the fact that conventional acoustic waveguides do not support a cut-off for the dominant mode of propagation, and therefore zero-index can be achieved only based on a collective resonance of the loading elements. Here we propose and experimentally realize acoustic supercoupling in a dual regime, using a compressibility-near-zero acoustic channel. Rather than engineering the channel with subwavelength inclusions, we operate at the cut-off of a higher-order acoustic mode, demonstrating the realization and efficient excitation of a zero-compressibility waveguide with effective soft boundaries. We experimentally verify strong transmission through a largely mismatched channel and uniform phase distribution, independent of the channel length. Our results open interesting pathways towards the realization of extreme acoustic parameters, and their implementation in relevant applications, such as ultrasound imaging, sonar technology, and sound transmission

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    Electromagnetic tunneling through a single-negative slab paired with a double-positive bi-layer

    Get PDF
    We show that resonant tunneling of electromagnetic fields can occur through a three-layer structure composed of a single-negative (i.e., either negative-permittivity or negative-permeability) slab paired with bi-layer made of double-positive (i.e., positive permittivity and permeability) media. In particular, one of the two double-positive media can be chosen arbitrarily (even vacuum), while the other may exhibit extreme (either near-zero or very high) permittivity/permeability values. Our results on this counterintuitive tunneling phenomenon also demonstrate the possibility of synthesizing double-positive slabs that effectively exhibit single-negative-like wave-impedance properties within a moderately wide frequency range.Comment: 5 pages, 5 figures (minor revisions

    Analytical Study of Sub-Wavelength Imaging by Uniaxial Epsilon-Near-Zero Metamaterial Slabs

    Get PDF
    We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial slabs with possibly tilted optical axis, analyzing their sub-wavelength focusing properties as a function of the design parameters. We derive in closed analytical form the associated two-dimensional Green's function in terms of special cylindrical functions. For the near-field parameter ranges of interest, we are also able to derive a small-argument approximation in terms of simpler analytical functions. Our results, validated and calibrated against a full-wave reference solution, expand the analytical tools available for computationally-efficient and physically-incisive modeling and design of metamaterial-based sub-wavelength imaging systems.Comment: 25 pages, 9 figures (modifications in the text; two figures and several references added

    Three-Dimensional Nanotransmission Lines at Optical Frequencies: A Recipe for Broadband Negative-Refraction Optical Metamaterials

    Get PDF
    Here we apply the optical nanocircuit concepts to design and analyze in detail a three-dimensional (3-D) plasmonic nanotransmission line network that may act as a negative-refraction broadband metamaterial at infrared and optical frequencies. After discussing the heuristic concepts at the basis of our theory, we show full-wave analytical results of the expected behavior of such materials, which show increased bandwidth and relative robustness to losses. The possibility and constraints of getting a 3-D fully isotropic response is also explored and conditions for minimal losses and increased bandwidth are discussed. Full-wave analytical results for some design examples employing realistic plasmonic materials at infrared and optical frequencies are also presented, and a case of sub-wavelength imaging system using a slab of this material is numerically investigated.Comment: 70 pages, 15 figure

    Active Negative Index Metamaterial Powered by an Electron Beam

    Get PDF
    A novel active negative index metamaterial that derives its gain from an electron beam is intro- duced. The metamaterial consists of a stack of equidistant parallel metal plates perforated by a periodic array of holes shaped as complementary split-ring resonators. It is shown that this structure supports a negative-index transverse magnetic electromagnetic mode that can resonantly interact with a relativistic electron beam. Such metamaterial can be used as a coherent radiation source or a particle accelerator.Comment: 5 pages, 4 figure

    Coherent magnetic plasmon modes in a contacting gold nano-sphere chain on a gold Slab

    Full text link
    A coupled magnetic resonator waveguide, composed of a contacting gold nanosphere chain on a gold slab, is proposed and investigated. A broadband coherent magnetic plasmon mode can be excited in this one dimensional nanostructure. By employing the Lagrangian formalism and the Fourier transform method, the dispersion properties of the wave vector and group velocity of the magnetic plasmon mode are investigated. Small group velocity can be obtained from this system which can be applied as subwavelength slow wave waveguides.Comment: 11pages, 5 figures, This work is published at Optics Express 19, 23782 (2011

    Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout

    Full text link
    The growing field of quantum information technology requires propagation of information over long distances with efficient readout mechanisms. Excitonic quantum fluids have emerged as a powerful platform for this task due to their straightforward electro-optical conversion. In two-dimensional transition metal dichalcogenides, the coupling between spin and valley provides exciting opportunities for harnessing, manipulating and storing bits of information. However, the large inhomogeneity of single layers cannot be overcome by the properties of bright excitons, hindering spin-valley transport. Nonetheless, the rich band structure supports dark excitonic states with strong binding energy and longer lifetime, ideally suited for long-range transport. Here we show that dark excitons can diffuse over several micrometers and prove that this repulsion-driven propagation is robust across non-uniform samples. The long-range propagation of dark states with an optical readout mediated by chiral phonons provides a new concept of excitonic devices for applications in both classical and quantum information technology
    • …
    corecore